(2019) Nanocrystalline cellulose-hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing. Biomedical Materials. ISSN 1748-6041
Full text not available from this repository.
Abstract
In recent years, applications ofbiopolymers such as hyaluronic acid (HA) for wound dressing have attracted more attention. However, the poor mechanical properties of HA-based wound dressings limit their clinical applications. Incorporation of reinforcing agents such as nanocrystalline cellulose (CNC) in HA-based wound dressings can improve their mechanical properties. In addition, controlled delivery of growth factors to the wound site using nanoparticles can significantly improve the healing process. In this study, we focus on development and characterization of a novel CNC reinforced HA-based composite containing chitosan nanoparticles loaded with GM-CSF (CNC-HA/GM-CSF-Chi-NPs composite) as an effective wound dressing. CNC-HA/GM-CSF-Chi-NPs composite showed some physicochemical characteristics such as appropriate mechanical properties, high swelling capacity (swelling ratio: 2622.1 +/- 35.2) and controlled release of GM-CSF up to 48 h which make it an excellent candidate for wound dressing. In vivo investigation showed that, after 13 d, the wounds covered with CNC-HA/GM-CSF-Chi-NPs composite could reach to nearly full wound closure and complete re-epithelialization compared to the normal saline treated wounds which exhibited nearly 70 of wound size reduction. Furthermore, the CNC-HA/GM-CSF-Chi-NPs composite treated wounds exhibited significantly lower inflammatory reaction, enhanced re-epithelialization and improved granulation tissue formation compared with CNC-HA/Chi-NPs composite treated wound; it might be due to positive effects of GM-CSF on the wound healing process. Our results suggest that CNC-HA/GM-CSF-Chi-NPs composite can be potentially applied in clinical practice for wound treatment.
Item Type: | Article |
---|---|
Keywords: | gm-csf chitosan nanoparticle nanocrystalline cellulose hyaluronic acid wound healing composite colony-stimulating factor drug-delivery systems in-vitro keratinocyte proliferation controlled-release growth-factors hydrogels protein gel microparticles |
Subjects: | QV Pharmacology |
Divisions: | Faculty of Medicine > Departments of Clinical Sciences > Department of Pathology Faculty of Pharmacy and Pharmaceutical Sciences > Department of Pharmaceutical Biotechnology Faculty of Pharmacy and Pharmaceutical Sciences > Department of Toxicology and Pharmacology Isfahan Pharmaceutical Sciences Research center Novel Drug Delivery Systems Research Center |
Journal or Publication Title: | Biomedical Materials |
Journal Index: | ISI |
Volume: | 14 |
Number: | 3 |
Identification Number: | ARTN 035003 10.1088/1748-605X/ab026c |
ISSN: | 1748-6041 |
Depositing User: | Zahra Otroj |
URI: | http://eprints.mui.ac.ir/id/eprint/10032 |
Actions (login required)
View Item |