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Summary. Objective: One of the disorders that occur in nephrotic syndrome would be hyperlipidemia. L-
carnitine and genistein have the capability to control this syndrome by changing in lipid metabolism. In the 
present study, we delved into the effects of Genistein and L-carnitine on the PPAR-α and CPT-1 gene ex-
pressions in experimental nephrotic syndrome. Methods: In controlled experimental study, 50 male Sprague–
Dawley rats were randomly divided into five groups consisting of 10 animals each with similar mean body 
weights (300±50 g): NC (normal-control), PC (patient-control), LC (L-carnitine), G (genistein), and LCG 
(L-carnitine-genistein). The spot urine samples were collected, and urine protein-to-creatinine ratio was 
measured. Hepatocytic RNA was extracted and real-time PCR was used for PPAR-α and CPT-1 gene Ex-
pression measurement. Results: At the end of the study, final weight of the patient groups was considerably 
lower than the NC group (P=0.001), and weight gain of the NC group was higher than the other groups 
(P<0.05). The urine protein and urine protein-to-creatinine ratio were significantly lower in LC, G, and LCG 
groups in comparison with PC group, at week 7 (P<0.001). The expression of PPAR-α and CPT-1 mRNA 
were not significantly higher in LC,G, and LCG groups in comparison with PC group, but ΔCT of these 
genes showed significant differences between the LC,G, and LCG groups and the PC group (P<0.001). Con-
clusion: Our study showed an increasing trend in PPAR-α and CPT-1 gene expressions, and synergistic effect 
of L-carnitine and genistein in experimental nephrotic syndrome.
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O r i g i n a l  A r t i c l e

Introduction

Nephrotic syndrome is a disorder arising from re-
nal damage, and causes extreme protein leakage into 
the urine (1). One of the complications that occur 
alongside this disease is hyperlipidemia (2). It leads to 
high levels of cholesterol (hypercholesterolemia): spe-

cifically, there is a considerable increase in low density 
lipoprotein-cholesterol (LDL-C) along with increases 
in the serum of very low density lipoprotein-choles-
terol (VLDL-C) concentration. Consequently, the 
risk of cardiovascular diseases is higher. Therefore, it 
reflects the importance of lipid metabolism control in 
this syndrome (3). Food phyto-estrogens are, in point 
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of fact, a subgroup of flavonoids that have extended 
benefits for human health: for this reason, many stud-
ies focus on their effects (3). This group comprises sev-
eral subgroups of non-steroid estrogens, including iso-
flavones and lignans widely distributed among plants 
(3). Isoflavones (genistein and daidzein) are the most 
significant groups being widely studied. However, 
these isoflavones exist only in soy beans and several 
other types of legumes (3). Despite the fact that soy 
functionality mechanism in bringing down the level 
of serum cholesterol has not been made clear to the 
full extent, soy protein has been applied for purposes 
of clinical treatment of hypercholesterolemia for many 
decades (4). The substances, such as phyto-estrogens, 
have the capacity to control cardiovascular diseases 
through bringing about changes in lipid metabolism 
(5). The profitable effects of dietary soy protein on the 
serum lipid concentrations have been highlighted in a 
wide range of different investigations that have been 
conducted both on animal and human cells (5-7). The 
key topic of whether any response to soy protein would 
be possibly mediated through the presence of isofla-
vones such as genistein,is important. 

Carnitine is a quaternary ammonium compound bi-
osynthesized from the amino acids lysine and methio-
nine (8). This compound is actually needed in living 
cells for purposes of transporting fatty acids from cyto-
sol to mitochondria during the process of lipid degrada-
tion and procreating the needed energy (9). Lately, the 
role played by carnitine in energy metabolism and in 
gene expression involved in lipid metabolism is taken 
into consideration. It has been proven that L-carnitine 
(a chemical structure of carnitine) is able to statistically 
significantly bring down the levels of triglycerides with-
in rats’ tissues and plasma (10). 

Peroxisome Proliferator-Activated Receptor-
alpha (PPAR-α) is a ligand-dependent transcription 
factor, a type of nuclear receptors (11). This factor can 
control fatty acid oxidative metabolism by means of 
the inducing transcription of carnitine-palmitoyltrans-
ferase-1 (CPT-1) in addition to several other enzymes 
intended for manipulating and/or controlling lipid 
oxidation (12-13). Genistein can cause some increase 
in PPAR-α (14, 15) and CPT-1 (16) gene expression. 
L-carnitine is also able to bring about an increase in 
the gene expression of PPAR-α (17) and CPT-1 (18, 

19). Notwithstanding this fact, the conducted inves-
tigations concerning the twin-effects of genistein and 
L-carnitine on the expressivity of these two mentioned 
genes are very limited. The lack of comprehensive stud-
ies in this regard has given rise to the design and con-
ducting of present study, bearing in mind as the goal: 
the investigation of genistein and L-carnitine effects 
both singularly (separately) and in conjunction with 
one another as for the gene expression of PPAR-α and 
CPT-1 in experiential nephrotic syndrome. 

Methods

Animals and experimental diets 

In this controlled experimental study, male 
Sprague–Dawley rats at 8 weeks of age were housed 
individually in a room with controlled temperature 
(20–22°C), humidity (55–65%), and lighting (from 
0700 to 1900 h), and fed assigned experimental diet 
(AIN 93 M diet, table 1) (20). After 7 days of accli-
matization to the conditions, the rats were randomly 
divided into five groups, consisting of 10 animals each 
with similar mean body weights (300±50 g): Normal-
control (NC), Patient-control (PC), L-carnitine (LC), 
genestein (G), and L-carnitine-genistein (LCG). We 
used CMC (Carboxymethyl cellulose dissolved in dis-
tilled water) as a suspending agent for genistein and 
L-carnitine.

All groups of rats received the experimental diet 
during the study (8 weeks). NC group received daily 
50 mg/kg body weight CMC suspension (concentra-
tion: 0.5 mg/ml) by gavage for 8 weeks. PC group re-
ceived 50 mg/kg body weight daily CMC by gavage 
for 8 weeks and 7.5 mg/kg body weight single dose 
Adriamycin (an agent that induces nephrotic syn-
drome), through tail vein at the end of week 2 (21), 
and then, we kept on gavage feeding of rats with CMC 
for 6 weeks. LC, G, and LCG groups were similar to 
PC group, but just with a difference; instead of only 
CMC, they received daily 50 mg/kg body weight 
L-carnitine, 50 mg/kg body weight genistein, and 50 
mg/kg body weight L-carnitine plus 50 mg/kg body 
weight genistein, respectively. For reaching this dos-
age, 15 mg genistein or L-carnitine was dissolved in 
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0.5 cc CMC (concentration: 0.5 mg/ml) for reaching 
the final solution (concentration: 26 mg/ml). 

Animals were maintained ad libitum on assigned 
experimental diet and water during the experiment,t 
and dietary intake and body weight were recorded 
every day and weekly, respectively, and weight change 
was measured by the difference recorded at the end of 
the weeks and expressed change per day. This study 
was approved by the review board of animal ethics of 
Tehran University of Medical Sciences (TUMS), and 
we followed the institute’s guidelines in the care and 
use of laboratory animals.

Sample preparation

During the study, we collected urine samples at 
the end of weeks 2, 3 and 7, and measured urine pro-

tein-to-creatinine ratio from spot urine samples. After 
8 weeks, the animals were sacrificed after overnight 
fasting for 12 hours. Blood was collected from abdom-
inal aorta, and livers were surgically excised. The blood 
was allowed to coagulate and centrifuged at 1,100 g for 
15 minutes, and serum was stored at -20°C until the 
assays. Liver tissues were collected and immediately 
frozen in liquid nitrogen, placed in 1.5-mL Eppendorf 
tubes, and stored at -80°C until analysis. 

RNA Extraction from Liver 

Hepatocytic RNA was extracted and purified us-
ing RNeasy plus Mini Kit (Qiagen, Valencia, Calif., 
USA) according to the manufacturer’s protocol. 
Quantity and purity of extracted RNA was checked 
by NanoDrop spectrophotometer (NanoDrop 
Technologies, Wilmington, Del., USA). A ratio of A 
260/280 between 1.9 and2.1 was taken into account 
as pure RNA. Single-strand cDNA was synthesized 
using QuantiTect Reverse Transcription Kit (Qiagen).

Real-time PCR for Gene Expression 

PCR primers for PPAR-alpha and CPT-1 genes 
and 18-S gene (as housekeeping) were designed by 
Primer express 3 software (Applied Biosystem, Foster 
city, CA, USA) (Table 2). 

PCR reactions were briefly as follows: PCR pro-
ceeded in special optical tubes in 48- reaction plates 
(MicroAmp Optical, ABI) with 20 µl reaction mixture 
containing 10µl Power SYBR® Green PCR Master 
Mix (Applied Biosystem, Foster city, CA, USA), 7µl  
DEPC treated water, 0.5µl forward primer, 0.5µl re-
verse primer ,and 2µl cDNA as template. The wells were 
sealed with optical adhesive film (Applied Biosystem, 
Foster city, CA, USA), and the plate was centrifuged 
for a few seconds at high speed. Amplification condi-
tions were performed using the standard two-step run 
protocol; step 1:10s at 95°C, step 2: 40 cycles of 15s 
at 95°C plus 1s at 60°C. After completion of ampli-
fication cycles, melt curve was generated to verify if a 
single gene product had been amplified. For this study, 
duplicate reactions of the same sample were run. 

For each gene, mRNA expression level was nor-
malized to the level of 18-S. The fold changes of genes 

Table1. Composition of experimental diet (AIN-93 modified 
diet for rodents)

Ingredient g/kg diet

Cornstarch 465.692

Casein (>85% protein) 140.000

Extrinized cornstarch (90-94% tetrasaccharides)1 155.000

Sucrose 100.000

Soybean oil (no additives) 40.000

Fiber2 50.000

Mineral mix 35.000

Vitamin mix 10.000

L-Cystine 1.800

Choline bitartrate (41.1% choline)3 2.500

Tert-butylhydroquinone 0.008

 u/kg diet

Total energy4 kcal 3601.0

protein% 14.1

CHO% 75.9

fat% 10.0

1Dyetrose (Dyets, Bethlehem, PA) and Lo-Dex 10 (American 
Maize, Hammond, IN) meet these specifications. An equivalent 
product may also be used.
2Solka-Floc®,200 FCC (FS&.D, St. Louis, MO) or its equivalent 
is recommended.
3Based on the molecular weight of the free base.
4The estimate of caloric content was based on the standard physi-
ological fuel values for protein, fat, and carbohydrate of 4, 9 and 4, 
respectively.
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expression were computed using the comparative Ct 
(2–ΔΔCt) method (Equation 1). Ct (Threshold cycle) 
number is first plotted against cDNA input (or loga-
rithm cDNA input), and the slope of the plot was cal-
culated to determine the amplification efficiency (E). 
ΔCt for each gene (target or reference) was then cal-
culated by subtracting the Ct number of target sample 
from that of control sample (22).

Equation 1:        2-ΔΔCt        

Whereas ΔΔCt = ΔCtreference - ΔCttarget

Whereas ΔCttarget = Ctcontrol (18S)  - Cttreatment (PC, LC, G,  LCG)   and  
ΔCtreference = Ctcontrol (18S)  - Cttreatment (NC)

2.5. Statistical analysis
Statistical analysis was done using SPSS 18.0 

for windows. Normality of all data was checked by 
Kolmogorov-Smirnov test.  Data was expressed as 
mean ± SD. Comparison of quantitative variables was 
evaluated by one-way ANOVA, followed by post hoc 
Scheffé test. P-value < 0.05 was considered statistically 
significant.

Results 

Body weight and food intake

As shown in Table 3, initial body weights between 
groups were not significant. However final weight and 
weight gain of the patient groups were significantly 
less than NC group (P<0.05). The PC group didn’t 
show any statistically significant differences compared 
with LC, G, and LCG groups in all these variables 
(Table 3).
3.2. Serum albumin, urine protein, and protein-to-
creatinine ratio

There were not any statistically significant differ-
ences between groups in urine protein and urine pro-
tein-to-creatinine ratio at week 2. As shown in table 
4, in PC group, before NS induction (week 2), urine 
protein and protein to creatinine was 111.85±5.92 and 
3.96±0.71, respectively, but one week after NS induc-
tion, these values had an increasing (671.14±180.28 
and 29.98±7.41). At the end of week 7, these values 

Table2. Primer sequences for real-time PCR

Gene name Sequence Length TM CG%

PPAR-alpha Forward  5´-TGTATGAAGCCATCTTCACG-3´ 20 50.96 45

 Reverse  5´-GGCATTGAACTTCATAGCGA-3´ 20 51.57 45

CPT-1 Forward  5´-TCAACCTCGGACCCAAATTG-3´ 20 51.55 50

 Reverse  5´-GCCCCGCAGGTAGATATATTC-3´ 21 52.92 52

18-S Forward  5´-CCATCCAAT CGGTAGTAGC-3´ 19 49.61 53

 Reverse   5´-GTAACCCGT TGAACCCCATT-3´ 20 50.05 50

Table3. Body weight and food intake in rats fed experimental diets for 8 weeks

Variable NC group PC group LC group G group LCG group p valuea

Initial weight (g) 296.50±25.50 291.50±28.19 294.77±23.62 303.22±34.23 312.00±26.25 0.501

Final weight (g) 355.30±18.43 283.30±34.13b 277.88±48.73b 283.44±47.47b 263.14±67.88b 0.001

Weight change (g/day) 1.04±0.45 -0.14±0.50b -0.36±0.83b -0.34±0.58b -0.87±0.77b < 0.001

Food intake (g/day) 20.36±0.73 16.73±0.49b 16.36±1.16b 15.33±1.10b 15.16±0.40b < 0.001

Protein Intake (g/day) 2.55±0.09 2.10±0.06b 2.05±0.14b 1.92±0.14b 1.90±.05b < 0.001

Energy intake (Kcal/day) 73.34±2.65 60.25±1.77 b 58.93±4.20 b 55.21±3.98 b 54.61±1.45 b < 0.001

Values are means±SD.
aOne-way ANOVA between groups.
bValues are significantly different compared with NC group by post hoc Scheffé test at P<0.05.
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had a massive increasing again; 1864.00±298.27 and 
71.48±17.20, respectively. The differences were signifi-
cant between PC group and LC, G, and LCG groups 
at week 7 (p<0.001); these patient groups had eventu-
ally lower urine protein in comparison with PC group, 
but there was not any significant difference between 
LC, G. and LCG groups. However LC and LCG 
groups had lower urine protein in comparison with G 
group (Table 4). Also, serum albumin only in LC and 
LCG groups were significantly higher than PC group 
(p<0.001) (Table 4, Graph 1, 2).

PPAR-alpha and CPT-1 Expression in hepatocyte-Ex-
tracted mRNA

The PPAR-alpha mRNA expression in LC (p 
value=0.12), G (p value=0.29), and LCG (p val-
ue=0.05) groups were not significantly differ-
ent than PC group (Table 5), but ΔCT of the 
gene expression had statistically significant differ-
ences between the LC, G, and LCG groups and 
the PC group (P<0.001) (Table 5). According to 
the relative CPT-1 gene expression, PC and G 
groups had lower gene expression than NC group 
(p=0.012, p = 0.017). Also there were not any signifi-

Table 4. Urine protein, protein-to-creatinine, and serum albumin in experimental groups at weeks 2, 3 and 7 and serum albumin.

Variable NC group PC group LC group G group LCG group p valuea

Week 2: 
Urine protein (mg/dl)  107.70±4.92 111.85±5.92 102.00±48.74 105.11±28.94 98.00±9.38 0.877

Week 3: 
Urine protein (mg/dl) 107.50±6.36 671.14±180.28b 273.00±99.73c 384.66±237.18b 210.25±131.77c < 0.001

Week 7: 
Urine protein (mg/dl) 103.90±22.65 1864.00±298.27b 328.50±27.87c 680.88±348.82bc 400.25±120.13c < 0.001

Week 2: 
Urine protein-to-creatinine ratio 2.96±1.26 3.96±0.71 1.85±0.28 3.74±1.82 3.67±1.47 0.104

Week 3: 
Urine protein-to-creatinine ratio 3.39±1.12 29.98±7.41b 18.70±30.71 14.38±7.92 5.88±.3.71c 0.001

Week 7: 
Urine protein-to-creatinine ratio 3.87±1.30 71.48±17.20b 22.97±3.19c 38.11±19.59bc 20.67±21.28c < 0.001

Serum albumin (g/dl) 3.63±0.25 1.32±0.34b 2.73±0.23bc 1.47±0.63b 2.86±1.35c < 0.001

Values are means±SD.
aOne-way ANOVA between groups.
bValues are significantly different compared with NC group by post hoc Scheffé test at P<0.05. 
cValues are significantly different compared with PC group by post hoc Scheffé test at P<0.05.

Figure 1. Urine protein in the groups at the end of weeks 2, 3, 7 

Figure 2. Urine protein to creatinine in the groups at the end 
of weeks 2, 3, 7 
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cant differences between LC (p value=0.79), G (p val-
ue=0.96), and LCG (p value=0.90) groups in compari-
son with PC group. However, these patients groups 
had insignificantly higher gene expression compared 
with PC group (Table 5). ΔCT of CPT-1 gene had 
statistically significant differences between the LC 
(p=0.006), G, and LCG (P<0.001) groups and the PC 
group (Table 5).  

Discussion

Over the separate effects of genistein and 
L-carnitine, we studied their twin effects in the rats. 
As shown in Table 3, all patient groups exhibited sig-
nificant weight loss compared to the NC group. The 
reasonable cause for this phenomenon was rats’ af-
fliction by the nephrotic syndrome which has conse-
quently followed by reductions in food and energy in-
takes among these groups. Several studies have shown 
that weight loss, is accompanied by an important an-
tiproteinuric effect (23). So lower calorie intake as a 
consequence of nephrotic syndrome maybe can explain 
these outcomes. In fact, NS leads to weight loss (21), 
and this effect is not reversed by any of the treatments 
undertaken in this study, as shown by the body weight 
values presented in Table 3. Also, NS can lead to lower 
food intake (21). Our results showed that NS induced 
a decrease in food intake, whereas none of the treat-
ments improved the NS effect. Moreover, G and LCG 
treatments further reduced the food intake.

In spite of receiving less protein in the patient 
groups as compared with the NC group, the urine 
protein and the urine protein-to-creatinine ratio have 

been higher in the patient groups versus the NC group. 
This indicates that they have been exhibit nephrotic 
syndrome syndrome and the tissue protein breakdown 
leading to higher weight loss among these groups, 
although such increase amongst a number of patient 
groups has not been statistically significant. 

On the other hand, adriamycin-induction of NS 
leads to increased levels of protein in urine. Treatment 
with LC, G, or both in rats with nephrotic syndrome 
reduced the symptoms of NS, as suggested by a lower 
level of urine protein. 

The Genistein Effect on PPAR-α and CPT-1 Gene Expression

The consumption of soy protein with its isofla-
vones (genistein and daidzein) prevents further accu-
mulation of liver triglycerides, itself leading to some 
reduction in the noxious pernicious effects of lipotox-
icity (23). The soy protein diet compared with casein 
diet leads to some increase in the PPAR-α gene ex-
pression within the liver, which cannot have any rela-
tionship with the CPT-1 mRNA increase (24). This 
gene expression pattern through the lipid and carbo-
hydrate oxidation increase is remarkably in correlation 
with the consumed energy increase among type 2 dia-
betic mice (25). 

In our study, receiving genistein has caused some 
increase in the trend of PPAR-alpha gene expression 
in the rats’ livers compared with the PC group, al-
though these increases have not been statistically sig-
nificant (table 5). 

Takahashi et al. (2008) showed that PPAR-α 
mRNA levels among those rats had been fed with soy 
protein was higher against those rats fed with casein, 

Table 5. PPAR-alpha and CPT-1 genes expressions in hepatocytes

Variable NC group PC group LC group G group LCG group p valuea

Δ-CT of PPAR-alpha 11.85±2.04 14.88±0.47 9.85±1.96c 8.49±2.25bc 7.82±1.30bc < 0.001

Gene expression of PPAR-alpha 1.42±1.07 0.11±0.03b 1.18±0.73 0.97±0.61 1.39±0.78 0.043

Δ-CT of CPT-1  8.39±2.37 12.28±0.83b 7.64±1.84c 6.60±2.32c 5.83±1.7c < 0.001

Gene expression of CPT-1 1.47±1.29 0.07±0.03b 0.53±0.54 0.33±0.33b 0.45±0.46 0.007

Data are reported as means ± SD.  ΔCT = CT of 18S – CT of target gene.
aOne-way ANOVA between groups.
bValues are significantly different compared with NC group by post hoc Scheffé test at P<0.05. 
cValues are significantly different compared with PC group by post hoc Scheffé test at P<0.05.
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while the group fed with soy protein plus isoflavones 
dose-dependently had higher PPAR-α gene expres-
sion compared with the other two groups (14). Mezei 
et al., in a study on male and female Obese Zucker 
Rats (OZR) afflicted by diabetes type 2, showed the 
consumption of some sort of diet rich in soy protein 
isoflavones is able to give rise to the betterment of li-
pid metabolism in these animals; the liver cholesterol 
and triglyceride concentrations in all OZRs having fed 
upon this diet has actually been lower compared with 
rats dieted on soy protein with low isoflavones and 
with casein diet. Also, the effect on the part of soy con-
taining genistein and daidzein on the cellular PPAR-α 
models was studied, and it was factually made clear 
that both types of isoflavones have been able to redou-
ble the gene expressivity of PPAR-α (15). 

Receiving genistein increased CPT-1 gene ex-
pression trend in our investigation; however, this in-
crease did not turn out to be statistically significant, 
either (table 5).

Another study showed in rats dieted on Soy 
Protein Isolate (SPI+), fatty acid oxidation and 
PPAR-α mRNA gene expression did increase statisti-
cally significantly in comparison with rats dieted on 
reduced soy protein isolate isoflavones (SPI-), and 
those on casein (26). Kim et al. (2004), , were also able 
to prove that genistein could actually increase the ex-
pression of genes that involved in lipid catabolism, for 
instance, the liver CPT-1 (CPT-1L) within hepatic 
cells (HepG2). In their study, increases in levels of 
CPT-1L mRNA after treatment with genistein in the 
presence of ICI1782780 – which is an estrogen recep-
tor controller – showed no fluctuations, leading to the 
propounding of the hypothesis that such an effect on 
the part of genistein would factually be independent of 
the estrogen receptors. Moreover, the study indicated 
that genistein has had the capacity to bring about some 
rise in PPAR-α gene expression both in the mRNA 
level and at the protein level. Additionally, genistein 
would have the propensity to activate PPAR-α tran-
scription activity which fact brought forth isoflavones 
as a probable potential ligand (16). 

All the same, another study on rats indicated that 
within the group receiving genistein and daidzein, 
CPT activity in addition to β oxidation had been lower 
than those of the control group (27). Choi et al. (2008)   

also came to realize – through studying non-diabetic 
female rats with complementary dietary genistein for a 
time period of 9 weeks – that genistein would have the 
capacity to statistically significantly reduce the levels 
of fatty acids β oxidation in addition to CPT-1 activity 
among the observed rats; yet, some improvement was 
seen – as compared with the control group – in the 
level of triglyceride and the serum free fatty acids (28). 

The L-carnitine Effect on the CPT-1 and PPAR-α Gene 
Expression

The effect of L-carnitine on the gene expressivity 
of CPT-1 and PPAR-α was also brought under scru-
tiny in our present investigation. It has been indicated 
that the treatment with L-carnitine could actually give 
rise to the PPAR-α increase within the kidney tu-
bular cells (29). Not only this, but the production of 
prostaglandins specially prostacyclin (PGI2) which are 
produced from arachidonic acids, in fact, is depend-
ent on the presence of carnitine (30). Prostacyclin is a 
type of ligand for PPAR-α and PPAR-δ (31). Ingrid 
et al. (32) have reported that PGI2 production would 
increase after the short term (4 days) consumption of 
L-carnitine among rats. Therefore, it could be consid-
ered as a strongly positive hypothesis that L-carnitine 
– through its effect on PGI2 production could, indirect-
ly, activate PPAR-α. In fact, L-carnitine itself hugely 
bringing up the level of CPT-II and CPT-1 transcrip-
tion; in addition, it has been able to statistically signifi-
cantly increase the CPT-1 activity within young adult 
animals’ livers (18, 19).

In our investigation, the group receiving 
L-carnitine has also shown higher levels of CPT-1 and 
PPAR-α gene expression levels as contrasted against 
the PC group, and even as contrasted against the 
group receiving genistein. It should, however, be noted 
that such differences were not statistically significant 
(table 5). NS reduced the PPAR-alpha expression and 
that treatment with LC, G, or both helped resume the 
PPAR-alpha normal expression. However, the addi-
tion of both LC and G does not improve the response 
seen with any of the two compounds.
Chen et al. (2009) have also showed that L-carnitine can 
be the cause of increase in the level of prostacyclin (PGI2) 
production and PPAR-α activity in the rat’s tubular cells 
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(NRK-52E) (29). Li et al. (2012) have also indicated 
in their study on human liver cells (HL7702) that the 
decreased PPAR-α gene expression by H2O2 would be 
moderated in case contacted with L-carnitine (17). 

The Genistein’s and L-Carnitine’s Twin-effects on CPT-1 
and PPAR-α Gene Expression

Very few studies have been performed in this field. 
Observation was made in our investigation over the 
synergistic effect of the twin-reception of L-carnitine 
and genistein’s effect upon the gene expressivity of both 
types of proteins:  CPT-1 and PPAR-α, although, yet 
again, the distinctive differences were not statistically 
significant. In an investigation concerning the enzyme 
activity and the gene expression of CPT-1A in the 
hepatocytes (HepG2) after a period of incubation with 
10 mg of genistein and 1 mmol of L-carnitine and 
some combination of them both, full evaluation was 
made for determining the CPT-1A activity and gene 
expression cells that had been co-incubated simultane-
ously with genistein and  L-carnitine, gene expression 
and activity were two to three times more than those 
cells which had undergone the mentioned incubation 
period only with one of these two substances (33). 

Another study on C57B1/6J mice (34) showed the 
CPT-1 gene expression in hepatic cells in the group re-
ceiving high fat diet alongside genistein and carnitine 
(HD+G+C) was factually 40 percent higher as com-
pared with the group receiving high fat diet alongside 
genistein (HD+G): thus, the synergistic metabolic ef-
fect of genistein and carnitine was shown forth. 

Such synergistic impressive effects could well be 
indicative of both in-common and non-in-common 
metabolic routes between L-carnitine and genistein, 
of course, deeper studies are needed. For the specif-
ic mechanism of genistein effect on the CPT-1 and 
PPAR-α gene expression, the gene expression activa-
tion of PPAR-α could well be deemed prior to CPT-
1, because genistein could cause gene expression and 
activity on the part of SREBP-2 (35) with any increase 
in the insulin-to-glucagon ratio (27); thus bringing up 
the level of PPAR-α gene expression to, consequently, 
increase the CPT-1 gene expressivity, although we can, 
in no way, disregard the hypothesis of the direct ef-
fect of genistein on the way of expression of both these 

proteins. The mechanism of L-carnitine could also be 
through some way of production of PGI2 (30), as was 
mentioned earlier. Also, its direct/indirect influence on 
PPAR-α gene expression to be followed by CPT-1 ex-
pressivity might also be somehow justifiable, although 
the hypothesis of the direct effect of L-carnitine on 
CPT-1 expressivity could never be brushed aside. 

In present investigation, as a result of limitations, 
we have had to apply 10 rats in each group while the 
time period for conducting the study was also set at 8 
weeks; in case the sample size was larger and the time 
period for conducting the investigation was longer. 
There would certainly be higher likelihood of gain-
ing at some statistically significant outcome in gene 
expression, although ΔCT within all patient groups 
receiving the supplements was significantly different 
from that of the PC group.        

Conclusion

The results of this study showed that a 6-week 
L-carnitine and genistein increased the hepatic 
PPAR-α and CPT-1 gene expression, and had syner-
gistic effects in rats with nephrotic syndrome; however 
the changes were not statistically significant. These 
finding could warrant future studies to determine the 
therapeutic effects of these supplements on nephrotic 
syndrome and lipid metabolism management.
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