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ABSTRACT In this paper, we introduce a new image modeling method by getting benefit from both sparsity
and multiscale characteristics of transform-domain modeling, along with the geometrical representation of
the graph-based models. The proposed method is named bandlet on an oriented graph (BOG) and improves
directional selectivity property of the bandlets. The conventional wavelet in the bandlet design is substituted
with a new non-orthogonal wavelet. The replaced wavelet is defined on a graph. In order to adjust the
orientation of the wavelet atoms with the corresponding edges in the image pixels, a directed graph is
constructed. The resultant wavelets in discrete scales can be considered as a frame and are created to build a
tight frame. To show the effectiveness of this new atomic representation, we demonstrated the performance of
the new model in noise alleviation of the optical coherence tomography (OCT) images (from the retina) and
microscopic images. Denoising results on OCT are reported on 72 slices, selected arbitrarily out of OCT
dataset from Topcon device. The combined method provided an enhancement of contrast to noise ratio
(CNR) (from 27.82 to 30.11), and improvement of the equivalent number of looks (ENL) (from 2183.26 to
2217.37) over the state-of-the-art in OCT noise reduction. In the denoising of microscopic images, PSNR
improvement (from 26.33 to 35.24) over the original image is shown along with the improvement in next
steps of feature extraction.

INDEX TERMS Image modeling, multiscale graph analysis, bandlets, oriented graphs, wavelets, image
denoising, bandlets on oriented graphs.

I. INTRODUCTION
Image modeling which aims at describing properties of
images in general can be considered as one of the most
crucial steps for a majority of image analysis tasks such as
image filtering, segmentation, coding, classification, regis-
tration and so on. As the model becomes more appropri-
ate for a signal, the corresponding analysis becomes more
powerful. Prevalent image modeling methods can be cate-
gorized according to the image domain: spatial and trans-
form domain [1]. Depending on the modeling point of
view, both models in spacial and transform domain may
be devised as deterministic, random, geometrical, or PDE
oriented models. Different transform domain models (like
single scale Fourier transform, multiscale X-lets [2]–[6], and
data adaptive models like Independent Component Analysis
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(ICA) [7], Principle Component Analysis (PCA) [8] and
Dictionary Learning (DL) methods [9]) are already well-
known in image processing [1]. However, combination of
the transform domain techniques with geometric modeling is
quite recent in the literature. Extension of the corresponding
transform from regular domains to irregular, non-Euclidean
spaces like a sphere [10], other conic sections [11], or ver-
tices of a weighted graph are examples of such com-
positions. Graphs can represent many datasets like com-
puter networks, transportation networks or social networks.
They have become common recently in image modeling
for different applications like segmentation, clustering, and
filtering [12], [13].

The combination of transform domain techniques with
graph modeling goes back to wavelets on un-weighted
graphs, which is introduced for analysis of computer net-
works [14], [15]. Another approach is a generic theory to
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decompose the wavelets using tight interpretation of a dif-
fusion operator with different powers [16]. A different kind
of wavelets is developed over compact manifolds is in [17]
and graph wavelet transform in spectral domain is intro-
duced by Hammond et al. [18]. A more recent work sug-
gests application of dictionary learning methods to represent
graph signals sparsely [19]. Taking advantage of both sparsity
and multiscale characteristics of transform domain modeling,
along with geometrical representation of graph basedmodels,
these combined methods are more powerful compared with
their original counterparts. In this paper, inspired by those
developments, we introduce a new blend of the mentioned
transform domain modeling strategies to achieve our goal of
image denoising.

Extensions of wavelet transform, which is themost popular
transform domain approach, to higher dimensional spaces
(like images and volumes) are first introduced based on prod-
ucts of one dimensional wavelets [20]. However, an undesir-
able bias for fixed wavelet directions, yields to introduction
of geometrical X-lets including Laplacian pyramids [21],
dual-tree wavelets [22], curvelet transfroms [23], and bandlet
transforms [24].

Wavelet based processing performs well on natural images
but it is not optimal in approximation of geometrically reg-
ular images. The reason is that isotropic support of wavelets
misses the regularity of the edges in arcs. To overcome this
problem, a bandlet approximation is introduced in [24]. Ban-
dlet transform [24]–[26] captures the redundancy in wavelet
coefficients by means of another transformation on multi-
scale coefficients. For example, in a denoising application,
the bandletization demands no statistical model and using
individual thresholding on resulted coefficients results in an
optimum estimate in the sense of the average quadratic risk
for geometric images. A bandlet basis is constructed upon
a wrapped version of a wavelet basis along the flow of
image gradients, with emphasis on regularity of the image
along the geometric flow. This version was non orthogonal
and suffered from boundary artifacts due to warping. In the
second generation of bandlets [27], these issues were solved
by reordered version of 2D wavelet coefficients, followed
by a 1D wavelet transform. The bandlet transform in image
denoising is proven to surpass the performance of transla-
tion invariant wavelet frames [28] and the methods that use
advanced statistical modeling for the wavelet coefficients
(BLS-GSM [29]). The recovered edges are more sharp and
less vibrating results are observed in bandlet results [25].
However, dependency of the bandlet transform on the wavelet
coefficients remains as a constraint.

In this paper, to overcome the above constraint and improve
the directionality properties of the bandlets, we propose a new
wavelet to replace the conventional wavelet in the bandlet
design. The newwavelet is defined on a directed graph and its
atoms are trained to be oriented according to the edges in an
image. We call the new method as the bandlet on an oriented
graph (BOG) and demonstrate its ability in noise reduction of
the retinal images.

II. BACKGROUND
A. SPACE-FREQUENCY ANALYSIS ON A GRAPH
In order to define the wavelet transform on graphs, one
should overcome the complication of scaling on discrete
graph nodes. Although several solutions are proposed for this
problem, we adopt the recent method by Hammond et al. [18]
who introduced a new approach using spectral theory as
follows.

On a constant scale s, the wavelet transform can be defined
as a transform on function f :(

T sf
)
(x)=

1
2π

∫
∞

−∞

eiωxψ̂∗ (sω) f̂ (ω) dω (1)

where f̂ (.) denotes the Fourier transform upon function f ,
ψ̂∗ (.) denotes the Fourier transform opun wavelet function
ψ(.), i stands for square root of −1, and ω is the angular
frequency. Note that the scale s is only available in ψ̂∗ (sω),
which transfers the scale parameter to the Fourier domain.

With selection of a kernel g : R → R+, it is possible to
define the wavelet transform. g should be a band pass filter:
g (0) = 0, and limx→∞ g (x) = 0. Then, the wavelet operator
Tg = g (L) defined on the Laplacian graph L that uses the
eigenvectors and the eigenvalues of the Laplacian operator,
χl and λl , ` = 0, 1 . . . ,N− 1 where N represents the number
of nodes of the graph, may be applied on the function f :

Wf (t, n)=(T tgf ) (n) =
∑N−1

`=0
g (tλ`) f̂ (`) χ` (n) . (2)

where t is scale of the wavelet operator and n is the vertex
number and f̂ (`) denotes the f̂ (.) (Fourier transform) on the
`th node.

In this structure, the spectral graph wavelets are orthogonal
to χ0 and nearly orthogonal to any χ` whose corresponding
λl is near to zero. Similar to conventional wavelets, for rep-
resentation of low-frequency contents of f , another class of
functions (scaling functions) is required. With selection of
a kernel h : R → R+, as a lowpass filter, h (0) > 0 ,
and h (x) → 0 if x → 0, scaling functions are defined as
φn = Thδn = h(L)δn and the coefficients are obtained by
Sf (n) = 〈φn, f 〉, where δn is the Dirac delta function at vertex
n.

Reconstruction can be obtained from:

1
Cg

∑N

n=1

∫
∞

0
Wf (t, n)ψt,n (m)

dt
t
=f #(m) (3)

where Cg is a constant depending on kernel g. Then we have:

f = f # + f̂ (0)χ0. (4)

However, the reconstruction is more complicated in real impl-
ementation and for more details we refer the reader to [18].

Since in an implementation of the given method, the scal-
ing values of t become discrete, the above equation is only
valid theoretically. Instead, limited number of scales (J )
are selected and t values are quantized by

{
tj
}J
j=1. Namely,

the number of wavelets ψtj,n are NJ and the number of
scaling functions φn are N . In order to understand how well
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these vectors represent functions defined on graph nodes,
the wavelets in discrete scales can be considered as a frame
and boundaries of the frame can be studied. It is well-known
that in Hilbert space H , vectors 0k ∈ H make a frame with
boundaries A and B, if:

A ‖f ‖2 ≤
∑

k
|〈f , 0k 〉|2 ≤ B ‖f ‖2 (5)

is correct for all f ∈ H. Those boundaries give information
about the stability of the reconstruction of f using 〈f , 0k 〉
coefficients which are Wf (t, n) and Sf (n) in this case. It can
be shown that:

A = minλ∈[0,λN−1] G(λ) (6)

B = maxλ∈[0,λN−1] G(λ) (7)

where G (λ) = h(λ)2 +
∑J

j=1 g(tjλ)
2 as given by Hammond

et al. [18].

B. ORIENTED WAVELET ON GRAPH
As oriented structures like edges are abundant in images,
oriented wavelets are naturally more appropriate tools in
image processing compared to isotropic filters [30]. There-
fore, a considerable size of previous literature is devoted to
obtain well-oriented wavelets [31].

In a simple construction of the graph, the equal weights of
connections to 8 neighbors produce isotropic wavelets, not
a sparse basis for representation of images. However, a wise
selection of the weights can lead to oriented wavelets. For
this purpose, the Laplacian of the graph should approximate a
second-order derivative operator [31]. Using two parameters
of θ (for orientation) and δ ∈ [0, 1] (for level of orientedness),
for each θ , the second-order derivative operator with a full-
level orientation is given by:(

D2
θ f
)
(x, y) =

d2

dε2
f (x + εcosθ, y+ εsinθ )|ε=0 . (8)

For δ < 1, the operator D(ε, θ) contains a portion of the
second-order derivative value in the perpendicular direction:

D (δ, θ) =
1+ δ
2

D2
θ +

1− δ
2

D2
θ+ π2

. (9)

It can be also shown that [32]:

D (δ, θ) =
1
2
(1+ δcos2θ) fxx + (δsin2θ) fxy

+
1
2
(1− δcos2θ) fyy. (10)

The connectivity values to 8 neighbors are then defined
by W loc

δ,θ as d1, d2, . . . , d8 as depicted in Figure 1. For
the sake of symmetry of the wavelets, the weights should
be symmetric, which requires calculation of only 4 d
values, hence leads to a 4 dimensional d ∈ R4

(dNW = dSE, dN = dS, dNE = dSW, dE = dW).
Let f be a continuous function sampled on nodes of a

graph, and let fi be the values of f on 8 neighbors in Figure 1.
xi and yi are integer offsets for node i, for instance

FIGURE 1. (a) Eight neighbors connections, (b) Sample wavelets [31]. N, S,
E, and W stand for North, South, East, and West.

(x1, y1) = (−1, 1). Assuming that distance between the nodes
is 1, a second order Taylor expansion yields to:

fi − f0= 1
(
xifx + yify

)
+

1
2
12

×

(
x2i fxx + 2xiyifxy + y2i fyy

)
+ o(13) (11)

where f0 represents the central node of the graph. By applying
Laplacian on f in the central node, we get:∑
i

di (fi − f0)

= 12
(
fxx
∑

i

1
2
dix2i + fxy

∑
i
dixiyi + fyy

∑
i
diy2i

)
+ o

(
13
)

(12)

Assuming 1 = 1, and equating values of fxx , fyy, and fxy
in 10 and 12:
d1 + d3 + d4 =

1
2
(1+ δcos2θ )

−d1 + d3 =
1
2
δsin2θ ⇔ Md = v(θ, δ)

d1 + d2 + d3 =
1
2
(1− δcos2θ )

(13)

where

M =

 1 0
−1 0
1 1

1 1
1 0
1 0

 , v = (1
2
, 0,

1
2

)T
+
δ

2
(cos

θ

2
, sin

θ

2
,− cos

θ

2
)
T
.

Since the graph weights should be positive, the final relation
to be solved is given by:

d∗(θ, δ) = argmind ‖d‖
2

subject to Md = v(θ, δ), and di ≥ 0 (14)

This equation is solved for a given set of θ directions, and
δ ≈ 0.44 as in [31].

C. SECOND GENERATION BANDLET TRANSFORM
Second generation bandlet transform is proposed on a stan-
dard orthogonal wavelet transform, first by changing the
order of 2D wavelet coefficients (Figure 2, b) and next by
applying a 1D wavelet transform [27]. Bandletization wipes
away the available correlation among wavelet coefficients
located close to singular regions. To skim off the mentioned
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FIGURE 2. Steps of original bandlet transform [27].

redundancy, regularities in the wavelet transform of the sur-
face should be detected to construct a tailored approximation.

Two main steps can be defined for bandletization. In first
step, the points should be reordered. For this purpose,
we select a square S with width of L at some scale 2jand
orientation s ∈ {H ,V ,D} in wavelet domain (figure 2, c).
The main purpose is to remove the non isotropic redundancy
which cannot be wiped out using 2D wavelet transform. For
this purpose, the wavelet points are ordered again to provide
a smooth 1D discrete signal (Figure 2, d). In order to retrieve
the geometrical regularity near sharp points, directional pro-
jections by reordering along a parallel to the real geometry
can be achieved [27].

In step 2 of bandletization, a one dimensional wavelet
transform is incorporated on the one dimensional discrete
signal. This transform can also discriminate between good
and bad reordering. Bandlet coefficients below a selected T
will be dumped, and higher T leads to a more aggressive
compression. The goal is finding a new order, or the size
of square S with a selected direction d , which yields to less
posssibleone dimensional coefficients more than the selected
T . Method: Bandlet on Oriented Graphs

According to the conventional bandlet theory [27], bandle-
tization removes the redundancy in the 2D wavelet transform
due to regularity caused by wavelets and further regularity
along the geometry. When using the conventional 2D wavelet
transform, three mother wavelets

{
ψH , ψV , ψD

}
(horizon-

tal, vertical and diagonal) are responsible for this geometry.
However, if the number of wavelet directions would increase,
more regularity and correspondingly, more effective bandleti-
zation can be expected. Wavelet on the graph has the intrinsic
characteristic to produce wavelets in every single direction.
Furthermore, the rotated wavelets are regular and without
checkerboard artifact which can also increase the needed reg-
ularity. Although the wavelet on the graph can theoretically
produce any wavelet rotation direction, we have to select a
limited number of rotation values due to complexity consid-
erations. The development below and results are reported on
8 directions.

When substituting the conventional wavelet with the
wavelet on the graph, the first question is how to set the
correct direction for wavelets. Namely, if we use the con-
ventional wavelet on the graph, one single set of (θ, δ) can
be selected for each image (let’s say a given θ0 and δ0 ≈
0.44). The weights of connections to 8 neighbors should
be calculated from Eq.14, for this set. The resulting vector
d = (d1, d2, d3, d4) will constitute the weights of the graph
and all the nodes have the same connectionweights. A sample

FIGURE 3. a) graph weights, (b) similarity matrix, (c) numbering of a 3× 3
image pixels for construction of a 8 neighbors graph.

FIGURE 4. a) weights of a directed graph, (b) similarity matrix, (c)
numbering of a 3×3 image pixels for construction of a 8 neighbors graph.

similarity matrix for a 3 × 3 image is shown in Figure 3.
The resulting wavelet coefficients will produce a 2D wavelet
output which concentrates on edges in θ0 direction.
In the proposed method, in order to consider different

orientations, let us estimate the orientation of each pixel and
calculate corresponding d values from Eq.14. The weights of
the graph connections, starting from that pixel to the neigh-
boring pixels is set to these d values. For example, pixel 5 in
Figure 3 is considered with orientation equal to θ5. The cor-
responding d values are d |5 = (dNW|5, dN|5, dNE|5, dE|5).
However, a problem with non oriented graphs arises here,
which is for a neighbor-ing pixel like 1, the orientation
θ1 is not essentially equal to θ5 and corresponding d |1 =
(dNW|1, dN|1, dNE|1, dE|1) will enforce other set of weights
to the connecting edge. In this case, the weight of the con-
nection between pixel 5 and 1 will be determined with two
different values dNW|5 and dNW|1 = dSE|1 (See Fig. 3.a).

D. CONSTRUCTION OF A DIRECTED GRAPH
To solve the problem described above, we propose a directed
graph as shown in Figure 4. The weights from one node are
then calculated according to orientation of the source node
(second index). It means that the Eq.14 is solved for each
orientation θ ; furthermore, δ value is set to 0.44 except if the
pixel is identified to be located in a smooth patch. In the latter
case, δ is set to 1, which yields an isotropic wavelet instead
of anisotropic cases.

32592 VOLUME 7, 2019



R. Kafieh et al.: Bandlets on Oriented Graphs: Application to Medical Image Enhancement

FIGURE 5. Proposed method to calculate orientation of each pixel. Left
column) A window of size 20× 20 is selected around each pixel, Middle
column) 1D projection of the pixel values are obtained in 8 selected
directions, Right column) the drift line of the 1D projection is removed.

With this new construction, the symmetry of weights for
each node is preserved, but the resulting matrix is nonsym-
metrical because of the intrinsic properties of the directed
graph.

E. CALCULATION OF ORIENTATION
In order to calculate the orientation of each pixel, we present
a simple yet intuitive strategy. A window of size N×N (e.g.
20 × 20) is selected around each pixel and a 1D projection
of the pixel values are obtained in 8 selected directions. The
drift line of the 1D projection is then removed and the sum of
absolute values for deviations from zero line is obtained. The
direction with the smallest sum is then accepted as the correct
orientation. This method is depicted in Figure 5. Furthermore,
according to a user-defined threshold value, the pixel whose
sum value is less than the threshold is identified to be located
in a smooth patch.

F. CALCULATION OF EIGENVALUES AND EIGENVECTORS
In the proposed BOG method, in order to design the wavelet
transform on a directed graph, the main problem one should
solve is the calculation of eigenvectors/values in a nonsym-
metrical matrix. It is possible to design a numerical method
for symmetric matrices. However, due to inherent charac-
teristics of non-symmetric matrices such as very sensitive
eigenvalues to little alternations of the matrix elements, cal-
culations for this category are not straightforward [32].

As a solution, we start with a reduction of the matrix to a
simpler form, e.g. the Hessenberg form, to prepare it for fur-
ther iterative procedures of eigenvalue/vector computations.
The upper Hessenberg matrix has elements equal to zero in
locations beneath the diagonal except the elements located in
first diagonal line. It should be emphasized that the matrix
constructed in our method from the non symmetric graph is
originally very near to a Hessenberg form because its intrinsic
properties (by construction) lead most of the below-diagonals
to zero and correspondingly make the calculation of an upper
Hessenberg matrix easier.

Two main approaches are used to change a matrix to an
upper Hessenberg form. The first scheme is applying a series
of Householder transformations, to zero needed elements
in specified columns of the matrix. The second and more
efficient method is Gaussian elimination with pivoting.

Employing the method based on Gaussian elimination,
we call the matrix before the r th stage Ar , and the original
matrix A =

[
ajk
]
= A1. Now, Ar becomes upper Hessenberg

for first r − 1 columns and rows. The r th step is then like:
1- Search in the r th column below the diagonal to find the

element with maximum magnitude. If it is ‘‘zero’’, the stage
is done. Go to the next stage. Otherwise, the maximum value
is in row r

′

.
2- Change the values in row r

′

and r + 1 (Pivoting proce-
dure). Do the same for column r

′

and r + 1.
3- For i = r + 2, r + 3, . . . ,N , compute:

ni,r+1 = air/ar+1,r. (15)

Subtract ni,r+1 times row r + 1 from row i. Also add ni,r+1
times column i to column r + 1 [32], [33].
After calculation of an upper Hessenberg matrix,

an improved QR algorithm with spectral shifts can be used
to calculate the eigenvectors [34]. Let λ be an eigenvalue of
the Hessenberg matrix H . We consider:

1 : H − λI = QR (QR factorization ) (16)

2 : H̄ = RQ+ λI (17)

It can be shown that H ∼ H̄ but H̄ is a smaller matrix
with easier calculations. However, since we don’t have access
to λ, a Rayleigh quotient shift can estimate the value to be
equal to the last diagonal element of the Hessenberg matrix.
This substitution of H̄ in QR decomposition is named shifted
QR method [34], which is used in our work to calculate the
eigenvalues.

G. FILTER DESIGN
The next stage in the BOG method is to design effective
scaling kernels and wavelet kernels. It can be proved that a
band pass and monic g filter like the one defined by Ham-
mond et al. [18] leads to an acceptable wavelet on the graph.
Remembering that scaling kernels are selected independently
from wavelet kernels (with the only limiting criteria on value
of G (λ)), Hammond et al. [18] also proposed a function
for h.
However, as in this work, our focus is on the denoising

application, a stable reconstruction becomes more impor-
tant. Therefore, design of kernels leading to a tight frame
is an ideal replacement for conventional kernels. In such
frames, values of frame boundaries (A and B in (5)) are equal
and the re-construction is improved in terms of speed and
accuracy [35].
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FIGURE 6. Sample of kernels for construction of the scaling function h(λ)
in blue, the wavelet functions g(tjλ) in red, and G (λ) in black using
conventional kernel values by Hammond et al. [18] (left) and Held
kernels [36] used in our proposed method (right).

We selected the tight frame introduced by Held et al. [36].
Finally, the filter design is reduced to [37]:

g(λ) =


cos

(
2πµ

(
λ

8τ1

))
) if τ1 ≤ λ ≤ τ2

sin
(
2πµ

(
λ

16τ1

))
if τ2 ≤ λ ≤ τ3

(18)

h(λ) =

1 if λ ≤ τ1

sin
(
2πµ

(
λ

8τ1

))
if τ1 ≤ λ ≤ τ2

(19)

where µ (x) = −1 + 24x − 144x2 + 256x3 and τ1 = 2
3 ,

τ2 = 2τ1, and τ3 = 4τ1. Scales of the wavelet can also
be defined by: tj = 2jλ−1max for j = 0, . . . , J − 1 where
J is the number of scales. Selecting these values leads to
a normal tight frame (frame boundaries equal to one). Fig-
ure 6 shows a comparison between conventional kernel values
by Hammond et al. [18] and the Held kernels [36] used in this
work. The scaling function h(λ) is shown in blue, the wavelet
functions g(tjλ) are in red, and G (λ) = h(λ)2+

∑J
j=1 g(tjλ)

2

is shown in black. As it can be observed from the plot on the
right, G (λ) is constant (for desired range of λ) in the tight
frame design, which leads to equal frame boundaries.

H. SUBSTITUTION OF THE PROPOSED WAVELET IN THE
CONVENTIONAL BANDLET TRANSFORM
In final stage of this proposed algorithm, we devise a way to
incorporate the proposed wavelet into the conventional Ban-
dlet transform. To this end, we calculate the coefficients of the
wavelet on graph and apply the ‘‘2D to 1D projection’’, ‘‘1D
wavelet transform’’ and ‘‘thresholding on the 1D wavelet
coefficients’’ in the given order. The main consideration in
this stage is the thresholding method on the 1D wavelet
values. We select the normal shrinkage method that provides
the best results in our experiments [38], [39]. The value of the
normal shrinkage threshold is obtained from:

TN = βσ̂ 2
υ/σ̂y (20)

where σ̂υ is the calculated variance of noise, and σ̂y is the
standard deviation in desired sub-band:

σ̂ 2
y =

1
M

∑M

m=1
A2m (21)

FIGURE 7. Demonstration of the BOG method ‘‘bandlet on an oriented
graph’’.

where Am stand for wavelet coefficients in selected sub-band
and M is stands for entire number of wavelet coefficients in
mentioned sub-band. The parameter β is given by:

β =
√
log (LK/J) (22)

where LK is dimension of the subband in level K th, and J is
the decompositions’ number.

We note that for calculation of σ̂υ as the noise variance,
we assume that the 1D signal is a kind of shuffling on the
2D wavelet values, and the 1D wavelet transform retains the
variance of the noise. Therefore, according to the character-
istics of images in a given application, the noise variance can
be estimated in the 2D wavelet on graph sub-bands, which is
exemplified in the next section.

Figure 7 demonstrates the proposed BOG method in 7
steps, which are elaborated above in the whole section.
Algorithm1 is the pseudo code for proposed Bandlet on
Graph (BOG).

Algorithm 1 Bandlet on Graph
1: Procedure –BOG
2: Input: K patches extracted from the image by quadtree
3: Output: K denoised patches
4: BEGIN
5: Determine the orientation of each pixel by III-B
(Figure 7-2)
6: Construct the directed graph (III-A)(Figure 7- 3)
7: Calculate the wavelet on graph (scaling image and

wavelet images) (II-B with consideration of III- C
and III-D)(Figure 7-4)

8: Project each of the wavelet images (Figure 7-5)
9: Apply 1Dwavelet transform and thresholding according
to III-E(Figure 7-6)
10: Reconstruct the patch (eq. (4) and more detail in [18])
(Figure 7-7)
11: END
12: end procedure
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III. FIRST APPLICATION: DENOISING OF OPTICAL
COHERENCE TOMOGRAPHY (OCT) IMAGES
In this section, we exemplify the presented bandlets on ori-
ented graphs technique on anOptical Coherence Tomography
(OCT) image denoising application. OCT is a method for
crosswise imaging of objects using light beams [40]. In oph-
thalmologic applications, OCT found its place in early diag-
nosis of retinal diseases and layer-related abnormalities [41].
As a result of its similarity in image construction, OCT suffers
from similar speckle noise that is observed in ultrasound
images. It is important to consider that cohener waves in
OCT produces speckle noise in axial and lateral paths. As a
result,, the potent resolution in OCT data, reduces by this
factor [42], [43]. It is also important to note that thementioned
speckle contains important textural information rather than
virginal noise and this correlation should be considered in
next calculations [44].

There is no doubt that noise reduction plays an impor-
tant role in OCT image processing. It improves the visual
inspection of the retinal layers for an ophthalmologist, and
increases the performance of segmentation and registration
algorithms [43], [45]. Denoising algorithms on OCT images
can be categorized into 2 main classes: Complex domain
methods and Magnitude domain methods [1], [43]. In com-
plex domainmethods, the noisemanagement is done upon the
optical setup and the methods are applied during the imag-
ing procedure; however, in magnitude domain algorithms,
a software-based method is applied offline on a previously-
recorded scan.

In this research, we mainly focus on the second class of
algorithms and compare the performance of 4 noise reduction
algorithmsbased on: proposed bandlet on graph, 2D separable
discrete wavelet transform, conventional bandlet, and 2D
dual-tree complex wavelet transform [43].

A. METHOD OF FIRST APPLICATION
The methods are implemented in MATLAB version 7.9
(MathWorks, Natick, MA) with Image Processing Toolbox.
We use a dataset from Topcon 3D OCT-1000 consisting of
six 3-D OCTs, selected arbitrarily. The cases in this dataset
are diagnosed with retinal Pigment Epithelial Detachment
(PED) and all of them had given written informed consent.
OCT images are acuired inFeiz Eye Center, Isfahan, Iran.
The images are interpreted as 16 bit grayscale images ranging
from 0 to 65,535. The tomograms are not log-compressed and
the intensity was expressed in arbitrary units (AU) instead
of decibels. The measurements are reported on seventy two
arbitrarily selected slices.

The BOG method is a non-homomorphic technique and
the transform is applied on multiplicative noise without using
nonlinear operations like logarithm to change the multiplica-
tive noise to additive noise. This idea is reported in [6]–[10]
and the multiplicative model is proposed as:

x (i) = s (i) g(i) (23)

FIGURE 8. Samples of ROIs in finding a) CNR, b) EP, c) TP and ENL. The
background ROIs are usually in bigger format, compared to foreground
regions.

where i is the pixel index between 1 andwhole pixel number, s
is the pure signal, g is the speckle noise, and x is the observed
data. After applying the transform directly on data, we have:

W (x (i)) = W (s (i) g (i)) = W (s (i)+ s (i) (g (i)− 1))

W (x (i)) = W (s (i))+W (s (i) (g (i)− 1)) . (24)

Hence we have an additive noise model in transform domain:

Y (k) = W (k)+ N (k) (25)

where Y (k) ,W (k), and N (k) are respectively the k th noisy
transform coefficients, noise-free transform coefficients, and
noise in the transform domain.

B. RESULTS OF FIRST APPLICATION ON REAL OCT DATA
CNR, Texture Preservation (TP), Edge Preservation (EP), and
Equivalent Number of Looks (ENL) are the measured per-
formance criteria, elaborated in [46]. The Regions of Interest
(ROI) are demonstrated in Figure 8. The backgroundROIs are
usually in bigger format, compared to foreground regions.

CNR represents the contrast between ROI and background.
The TP shows how good is the method in retaining the origi-
nal texture and ranges 0 and 1; One is expected original image
without alternation. EP in ROI says how the algorithm takes
care of the edges in original data, and ENL is a smoothness
measure in homogenous regions

In this application, due to known structural property of the
OCT images, the upper and lower regions of the image con-
tain mainly the noise component in the signal. Accordingly,
over a predefined window that is located in a lower area of the
image in the 2D wavelet on graph sub-bands, we calculate
the noise variance (Eq. 21), whose value is estimated as
σ̂ 2
y = 15.
The value of the performance measures for each denoising

algorithm on seventy two arbitrarily selected slices is shown
in Table 1. Figure 9 demonstrates samples of denoising with
different methods.

As shown in Table 1, the performance of the BOG method
surpasses the similar baseline method (the conventional ban-
dlet). The results are slightly better than a recent meth-
ods [43], [44]

A small set of data is used for tuning the parameters to effi-
cient and acceptable results. For instance, the images in this
study have size of 512×650. The window size of 20×20 was
selected empirically. Very small windows were not capable

VOLUME 7, 2019 32595



R. Kafieh et al.: Bandlets on Oriented Graphs: Application to Medical Image Enhancement

TABLE 1. The performance measures for each denoising method in
datasets from Topcon device.

FIGURE 9. Samples of denoising with different methods.The right lower
block shows the zoomed version for better comparison.

of showing the orientation and big windows were suffering
frommultiple orientations in each area. This window size was
also tested on images of size 256× 256 and the results were
acceptable. Regarding the orientations, the limited number
8 is selected since higher numbers would increase computa-
tion time; however, more orientation is expected to improve
the results.

To provide a comparison between the BOG method for
construction of a directed graph and a circular wavelet (δ =
1), Figure 10 demonstrates a sample result. It can be noted
that the resulting scaling function and wavelet coefficient
are noticeably coarser and more blurred using the circular
wavelet. The results become even worse if the 2D separable
discrete wavelet transform were used; since the latter even
suffers from a chalkboard artifact to the resulting images. This
improvement can be justified by orientation-congruence of
the BOG method.

FIGURE 10. Comparison of the BOG method for construction of a directed
graph (right block) with a circular wavelet (δ = 1) (left block).

FIGURE 11. The cross-section 1D data along the yellow line. a) Original
image taken from Topcon OCT device, b) the image after denoising with
BOG method, c) image after denoising with conventional wavelet, d, e, f)
corresponding cross section signals, g, h, i) Simple canny edge detector
applied on a, b, c, respectively. ILM/NFL, inner limiting membrane/nerve
fiber layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer
plexiform layer; ELM, external limiting membrane; IS/OS junction
between the inner and outer segment of the photoreceptors; RPE, retinal
pigment epithelium; CH/SC junction between the choroid and sclera.

As mentioned above, denoising is expected to facilitate the
segmentation and registration process in OCT images. Many
segmentation methods (with emphasis on A-scan or gradient-
based methods) are very dependant on edge information [48].
The raw OCT image misses the weak edge features due
to presence of speckle [49]. An ideal denoising method is
expected to suppress the speckle noise and provide vivid edge
features next segmentation steps. On the other hand, a weak
denoising degrades the image features and makes segmenta-
tion worse. Figure 11 shows the performance of the proposed-
BOG algorithm to suppress speckle noise and to produce
identifiable peak and valley features. Furthermore, a simple
edge detection on results of the BOG can demonstrate its
feature preservation ability compared to the original image
and that of a simple denoising method like conventional
wavelet (Figure 11, g, h, i). Particularly, the effect of our
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FIGURE 12. Evaluation of the BOG using synthetic OCT data. (a) Original
noiseless synthesized OCT with synthesized vessels from [50], (b) Noisy
version of (a) by method described in [51], (c) denoised image by BOG,
(d-f) zoomed versions of (a-c).

denoising method is visible in unveiling boundaries of layers
like INL, RPE, Ch/Sc, thus facilitating a better segmentation
phase following denoising.

C. RESULTS OF FIRST APPLICATION ON
SYNTHETIC OCT DATA
The BOG is also validated using two hundred synthetic
images from [50]. Noise was added with the method
described in [51] using α1 = 0.2;α2 = 0.2;α3 = 0.6;β1 =
0.6;β2 = 0.3;β3 = 0.1; σ1 = [1.5, 0.15]; σ2 = [0.5, 0.5];
block sizes of B1 = [2, 1]; B2 = [5, 1]; and a 100×100 patch
of the vitreous in a real OCT. Mean PSNR value increased
from 29.63 in original noisy images to 43.33 in the proposed
method. One sample of the results is presented in Figure 12.

To compare the BOGwith bare orientedwavelet transform,
a comparison with [6] and [7] is presented. The oriented
wavelet transform [6] is only based on two orientations
(horizontal/ vertical or diagonal/anti-diagonal). Furthermore,
the hidden Markov field (HMF) is used to model the orienta-
tion map, which is a time consuming process. The tight frame
steerable pyramid in [7] is also a kind of oriented wavelet
which is able to produce any possible orientation (similar
to the proposed method). The local orientation is selected
by maximizing the Hilbert transform of the original wavelet
decompostion which does not lead to a high time complexity.
However, the method is different from the BOG since an
adapting algorithm is proposed in [7] which tailors the bases
for each image by PCA. On the other hand, the proposed
method has no training stage for execution.

The tight frame steerable pyramid [7] is compared to the
BOG on a sample image provided by Jung [7] (Figure 13 (a-
d)). The PSNR value is 41.86 for steerable pyramid method
and 42.32 for the proposed method. The improvement is
more obvious when the image is cropped to a smaller region

FIGURE 13. Comparison of tight frame steerable pyramid [7] and the BOG
method. (a) original raw image, (b) Corrupted image by Gaussian noise
with sigma = 20, (c) image after denoising with tight frame steerable
pyramid [7], (d) denoised image by BOG. (e-f) cropped versions of (a-d),
(i-l) reduced brightness for (e-h).

(Figure 13 (e-h)) where the PSNR is 35.05 for steerable pyra-
mid method and 42.79 for the BOG method. Figure 13 (i-l)
show versions with reduced brightness of (e-h) to emphasize
artifacts in (k).

IV. SECOND APPLICATION: DENOISING OF
MICROSCOPIC IMAGES
The second application of the presented bandlets on ori-
ented graphs technique is on photon-limited fluorescence
microscopy images.

A. METHOD OF SECOND APPLICATION ON MICROSCOPIC
IMAGES
Fluorescence microscopy is among methods which acquires
the images by summing the number of photons and accord-
ingly with very low signal-to-noise ratio [52]. The proposed
method is tested on sample images provided by recent paper
in this application [53]. The authors applied a noise modeled
by combining Poisson and Gaussian probabilities. They also
used the contourlet transform for representing the edges in
produced data. The method was compared with state-of-the-
art BM3D [53] method on two fluorescence microscopy data
sets. The first data set is imaged with a Nikon C1 Plus con-
focal laser microscope (Medicinal Bioconvergence Research
Center, Seoul National University). One hundred HeLa cells
images are available in this data set, sized 512x512, and
dye labeled in 3 fluorescent colors. The gold standard for
calculation of measures like PSNR and SSIM is average
of 100 images [53].

B. RESULTS OF SECOND APPLICATION
ON HeLa CELLS IMAGES
Figure 14 and 15 demonstrates the results of BM3D, method
by Yang and Lee [53], and the BOG method. The BOG
shows capability of removing noise along with protection
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FIGURE 14. C (a) gold standard, (b) one sample image, (c) BM3D method,
(d) the method introduced in [54], (e) the proposed method.

FIGURE 15. Comparison of proposed method with available methods for
first dataset of HeLa cell images from [52] with emphasis on three
channels. Left: different color channels along with baseline image,
original input image, and results of denoising with BOG. Right: zoomed
version of the left image.

TABLE 2. Comparison of PSNR(dB) between BOG method,BM3D and [54]
each channel on the first dataset of HeLa cell images [54].

of the details in all three channels as elaborated in Figure
15. An average image computed from 100 images is used
as the baseline image. The comparison of PSNR between
BM3D, method in [54], and the BOG in each channel is
presented in Table 2. The BOG method outperforms both of
the mentioned methods in three channels.

The second image set were imaged with a Nikon A1R
confocal laser (Department of Life Science, Ewha W. Uni-
versity). The data set has 40 HeLa cell images with size
of 512x512, dye labeled in 2 fluorescentcolorsl. The gold
standard is produced by averagingthe 40 [53]. To report
the evaluation of denoising method in diverse noise levels,
3 datasets with different intensities were incorporated [53]
but the related data is not released. Therefore, we compared
our results with BM3D and method in [53] only on provided
laser intensity of 0.4 in Figure 16. Furthermore, Figure 16
(e-g) shows local structural similarity (SSIM) value maps
for mentioned methods to demonstrate the higher similarity

TABLE 3. Table III. Comparison of PSNR(dB) and SSIM between the BOG
method with the BM3D and results of [53] with laser intensity equal to
0.4 ( the second HeLa cell dataset [53]).

FIGURE 16. The second HeLa cell dataset [53] laser intensity equal to 0.4
(a) gold statndard, (b) BM3D, (c) the algorithm in [53], (d) the BOG
method, (e, f, g) Local SSIM value map for (b, c, d), respectively.

FIGURE 17. Filament extraction method. First row: results of [54] on
original image, Second row: results of [53] on image after applying the
BOG method. (a, e) The input image, (b, f) presence likelihood of a
filament in each pixel, (c, g) centerlines of each likely filament, (d, h) the
individual filaments.

of the proposed method to the original image. The PSNR
results and mean structural similarity (MSSIM), provided
in Table 3 show the numerical superiority of the BOG to other
methods in this laser intensity.

C. RESULTS OF SECOND APPLICATION ON FILAMENT
ENHANCEMENT
To show the ability of the BOG method as a pre-processing
step for feature extraction in microscopic images, we concen-
trated on complete extraction and enumeration of individual
filaments from the cellular cytoskeletal network as proposed
by Basu et al. [54]. A new algorithm is proposed in [54]
to find centerlines of filament bundles and to segment each
filaments based on the identified centerlines.. A filament
enhancement step is followed by localization method to find
filaments automatically frommicroscopy images.We applied
the proposed method on real confocal microscope images of
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FIGURE 18. Filament extraction method (zoomed version of Fig. 17).

TABLE 4. Comparative table of the characteristics.

flat cells (2D images) as provided by Basu et al. [54] and
showed how the proposed method can improve the efficiency
of [54]. Figure 17 and 18 show real examples demonstrating
the extraction pipeline in [54]. The top row shows procedure
in [54] on original data and the second row shows the results
of [54] on data processed by the BOG method. The left
column shows original images; the second column shown the
presence likelihood of the filament in each pixel; The third
column demonstrates the thresholded version of the previous
image to provide a rough estimate of the filament place; The
right panel shows the final resulrs of the algorithm in [54] too
find each filament.

As can be observed in Figure 17 and particularly Figure 18,
the filaments that were not visible in the output image on the
right, are extracted after applying our BOG method. Visu-
ally, an increased sensitivity in the feature extraction step is
obtained.

V. DISCUSSION AND CONCLUSIONS
The proposed BOG method takes advantage of both sparsity
and multiscale characteristics of transform domain modeling,
along with geometrical representation of graph basedmodels.

The properties of the proposed method is summarized in a
comparative table of the characteristics.

According to the provided application on denoising of
OCT images, it can be concluded that the proposed BOG
method surpasses the similar 2D transforms in OCT image
denoising. The method combines the properties of a conven-
tional bandlet, with an orientation-adaptive strategy, which
yields to better edge preservation and denoising. The perfor-
mance is even slightly better than the 2D dictionary learning
method with a complex wavelet start, which shows that the
presented orientation tuning improves the performance of
the method. The BOG method can be applied on a given
stand-alone OCT image without requiring any training stage.
Only required prior information about the image properties
is an estimate on the noise variance, which is similar to any
wavelet-based method that applies shrinkage. According to
results on microscopic images, the BOG outperforms recent
methods in denoising of Hella cells and filaments and can
improve the feature extraction in such images.

The proposed method is theoretically expandable to 3D.
Furthermore, the application of the proposed bandlet on ori-
ented graphs to other image analysis tasks is an open future
research direction.
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