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A B S T R A C T

Objectives: Hearing loss (HL) is the most common sensory-neural disorder with excessive clinical and genetic
heterogeneity, which negatively affects life quality. Autosomal recessive non-syndromic hearing loss (ARNSHL)
is the most common form of the disease with no specific genotype-phenotype correlation in most of the cases.
Whole exome sequencing (WES) is a powerful tool to overcome the problem of finding mutations in hetero-
geneous disorders.
Methods: A comprehensive clinical and pedigree examination was performed on a multiplex family from
Khuzestan province suffering from hereditary HL. Direct sequencing of GJB2 and genetic linkage analysis of
DFNB1A/B was accomplished. WES was utilized to find possible genetic etiology of the disease. Co-segregation
analysis of the candidate variant was done. High resolution melting analysis was applied to detect variant status
in 50 healthy matched controls.
Results: Clinical investigations suggested ARNSHL in the pedigree. The family was negative for DFNB1A/B. WES
revealed a novel nonsense mutation, c.256G > T (p.Glu86*), in TMC1 segregating with the phenotype in the
pedigree. The variant was absent in the controls.
Conclusion: Here, we report successful application of WES to identify the molecular pathogenesis of ARNSHL in a
large family. The novel nonsense TMC1 variant meets the criteria of being pathogenic according to the ACMG-
AMP variant interpretation guideline.

1. Introduction

Hearing loss (HL) is the most common sensory-neural defect in
human, with incidence of 1–2 new cases in 1000 newborns [1]. This
rate rises to 2.83 per 1000 in childhood and is further increased to 3.5
per 1000 in adolescents [2,3]. According to the World Health Organi-
zation (WHO) reports, about 360 million people are suffered from HL
throughout the world (http://www.who.int/mediacentre/factsheets/
fs300/en/). It accounts for the second most common disability in Iran

after mental retardation [4]. This trait can negatively affect behavioral,
cognitive, physical, social activities and life quality [5].

HL can be pre-lingual or post-lingual according to age of onset.
Based on the lesion site, it is categorizing to conductive, if the defect is
in the outer and middle ear, sensory-neural, if cochlear dysfunction
occurs, and mixed, which is a combination of both forms. The severity
of the phenotype is characterized by hearing threshold ranging from
mild to profound. Syndromic forms are manifested with involvement of
other body organs while HL is the sole clinically relevant feature in non-
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syndromic types [6]. The latter form comprise about 70% of the HL
cases and autosomal recessive mode of inheritance is observed in
75–85% of the situations, while autosomal dominant pattern comprises
15–24% of the cases. X-linked recessive and mitochondrial inheritance
account for rare causes of the disease, which involve 1–2% of the pa-
tients [7].

Autosomal recessive non-syndromic HL (ARNSHL) is a genetically
heterogeneous disorder. So far, more than 90 distinct loci and 70 dif-
ferent genes with various functions have been discovered related to this
trait (http://hereditaryhearingloss.org/).

Several studies have focused on the importance of consanguineous
marriage in clinical genetics [8,9]. Autosomal recessive disorders are
more common in populations with high rate of consanguinity, therefore
Iran with an average rate of 38.6% consanguinity can be appropriate
for studies on such diseases, including hearing loss [10].

DFNB1A/B encompasses Connexin26 (GJB2) and Connexin30
(GJB6), respectively [11,12]. These two genes account for the most
common causes of HL in many countries. Homozygous or compound
heterozygous variants in the GJB2 gene leads to recessive form of non-
syndromic HL [11]. Also, large deletions in the GJB6 gene extend dis-
tally to GJB2, resulting in ARNSHL [13,14].

The prevalence of the GJB2 mutations is variable in different po-
pulations of Iran, depending on ethnicity and geographical location
[15–17]. GJB2 mutations have an average range of 18.7% [18], with a
frequency spectrum of 33% in the north of Iran to less than 2% in
southern regions of Iran. DFNB1A/B mutation screening is crucial prior
to large-scale analysis [19].

Non-syndromic hearing loss (NSHL) in not associated with specific
phenotypic features, except rare conditions with inner ear malforma-
tions harboring SLC26A4 mutations [20] and also those with U-shaped
moderate to severe ARNSHL, which might have TECTA [21], or CABP2
[22,23] mutations. Furthermore, in rare circumstances, pathogenic
variants in syndromic-related deafness genes can mimic non-syndromic
form of HL [24].

Whole exome sequencing (WES) is frequently applied in diagnostic
medical genetics laboratories and research in order to unravel mole-
cular etiology of clinically and genetically heterogeneous hereditary
disorders [25–27]. This technique has the ability to reveal disease-
causing variants in known disease-associated genes [28,29] and also to
discover novel genes [22].

In the present study, we applied WES to resolve the genetic diag-
nosis of ARNSHL in a large inbred Iranian kindred, leading to identi-
fication of a novel nonsense mutation in the TMC1 gene.

2. Materials and methods

2.1. Subjects and clinical investigations

An inbred family (Ahv-18) was ascertained from Khuzestan pro-
vince of Iran. A comprehensive family history, including age of onset,
exposure to ototoxic drugs during pregnancy and childhood infections,
was obtained. A five generation pedigree was drawn. Air and bone
conduction pure tone audiometry from 250 Hz to 8000 Hz were ob-
tained [30,31]. Further clinical examinations were also carried out to
rule out the involvement of other body organs and syndromic HL forms.
Informed written consent was taken from participants before obtaining
5–10 ml of venous blood in EDTA-containing tube for DNA testing. The
study was approved by Review Boards of the Isfahan University of
Medical Sciences and the Shahrekord University of Medical Sciences.

2.2. Mutation screening of DFNB1A/B using both genetic linkage and
sequencing

DNA was extracted from peripheral blood lymphocytes according to
the standard phenol-chloroform procedure. DNA integrity and con-
centration were checked by agarose gel and Nanospec cube

biophotometer (Nanolytik®, Dusseldorf, Germany). Using forward and
reverse primers, the coding exon was PCR-sequenced bi-directionally
by an automated sequencer, ABI 3130 XL (Applied Biosystems, Foster
City, California, USA), as described before [32]. Also, using three short
tandem repeat polymorphic markers (D13S1236, D13S1275 and
D13S175) genetic linkage analysis was implemented to find homo-
zygosity-by-descent at DFNB1A/B loci.

2.3. Whole exome sequencing

About 1 μg of genomic DNA sample of the patient (V:3), negative for
GJB2 mutations and without linkage to DFNB1A/B, was subjected to
high throughput sequencing. In brief, fragmentation was done by hy-
drodynamic shearing system (Covaris, Massachusetts, USA) to generate
180–280 bp fragments. Liquid-phase targeted genomic enrichment was
utilized to prepare libraries by Agilent SureSelect Human All Exon kit
(Agilent Technologies, CA, USA). Sequencing was performed on
IlluminaHiseq 2000 to generate 101 bp pair-end reads.

2.4. Bioinformatics analyses

BWA v0.7.8-r455 software was applied to map sequence reads to
reference genome (hg19, NCBI Build 37). Samtools v1.0 and Picard
v1.111 were used to sort the BAM files and to mark duplicates, re-
spectively. Variant calling was done by GATK v3.1 and variant anno-
tation was accomplished by ANNOVAR.

Variant filtering was performed based on MAF<1% in dbSNP
version 147, 1000 genomes project phase 3 database, NHLBI GO exome
sequencing project (ESP), exome aggregation consortium (ExAC) and
Iranome database for missense, nonsense, splicesite, stop loss, start
codon change, frame-shift and in-frame indels. Human Gene Mutation
Database (HGMD) and Clinvar were checked and a comprehensive lit-
erature review was performed to evaluate variant novelty and disease
association.

2.5. Co-segregation analysis and control screening

Exon 8 of the TMC1 gene was subjected to direct PCR-sequencing
among available affected individuals (7 members) and healthy mem-
bers of the pedigree to evaluate the co-segregation of the variant with
the phenotype. Chromatograms were compared with reference se-
quence (NM_138691) using SeqMan software version 5.00 ©

(DNASTAR, Madison, WI, USA). Variant nomenclature was based on
HGVS [33].

High resolution melting technique (HRM) [34] was performed in
duplicate for screening the variant in 50 ethnically matched controls.
HRM was conducted by a Rotor-Gene 6000 (Corbett Life Science,
Qiagen) and using the EvaGreen PCR Master Mix. The reaction mixture
(25 μl) contained 50 ng of genomic DNA, 17.5 pM of mixed primers of
forward (CCTGCCTTCCTTAAGTTCCAAAGTC) and reverse (CCATGGT
TTGCATTTGACAGTAGC) oligonucleotide primers (designed by Primer
3, http://primer3.ut.ee/), 9.25 μl water and 12.5 μl EvaGreen Master
Mix. The PCR conditions included an initial denaturation step at 95 °C
for 10 min, followed by 40 cycles amplification consisting of dena-
turation at 95 °C for 10s, annealing at 60 °C for 20s and extension at
72 °C for 30s, followed by melting curve analysis to verify qPCR product
identity. Then, the emitted fluorescence in each 0.1 °C temperature,
increasing in the range of 65–90 °C was measured. Melting curves were
created by the reduction in fluorescence with the increase in the tem-
perature. Data were analyzed using Qiagen HRM software [35]. Totally,
10% (n=5) of the control samples were randomly subjected to Sanger
sequencing to confirm the HRM results.
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3. Result

3.1. Clinical outcomes

A large highly inbred family with multiple (n=11) affected in-
dividuals was enrolled in the study. The kindred had Arab ethnicity
from Khuzestan province, southwest of Iran. The proband, with con-
genital HL, was born to a second cousin marriage (Fig. 1).

More clinical examinations did not indicate any cardiovascular,
skin, ophthalmic abnormality in affected members. Therefore, syn-
dromic form of HL was ruled out. Audiogram profile of the patients
displayed profound hearing loss in all frequencies. The pedigree re-
vealed several consanguineous marriages, suggesting ARNSHL in the
offspring.

3.2. Molecular findings

Direct sequencing of the coding exon of the GJB2 gene did not show
any mutation. In addition, homozygosity mapping for DFNB1A/B ruled
out existence of pathogenic variants in the non-coding region of GJB2
and large deletions in GJB6.

WES was applied to identify the genetic etiology of the disease. The
mean depth of coverage was 50X and 92% of targeted regions were
covered.

The total number of variants was 363287. By applying the following
strategy for variant filtering, the number of variants was limited to
eleven in five genes. In the first step of variant filtering, we focused on
nonsense, missense and frameshift indels and excluded noncoding or
synonymous variants. Deleterious variants with higher impact on
mRNA stability and protein structure were retained. According to the
pedigree, as autosomal recessive mode of inheritance, homozygous
variants were selected. Variants with MAF>1% based on dbSNP and
other population databases were discarded. The TMC1 gene, known to
cause ARNSHL was selected.

A novel homozygous transversion nonsense variant was identified in
exon 8 of the TMC1 gene. TMC1: c.256G > T (p.Glu86*) (NM_138691)
leads to a truncated protein located in the first intracellular domain.

The nonsense variant was absent from dbSNP version 147, 1000 gen-
omes project phase 3, NHLBI GO ESP, ExAC, Iranome, HGMD and
clinvar databases. The variant was not found in the literature.
Sequencing of exon 8 of the TMC1 gene among available healthy and
affected family members confirmed co-segregation of the variant with
ARNSHL in the pedigree (Fig. 2). The variant was observed as homo-
zygote in all affected members. Screening of the variant via HRM in
control samples revealed no mutation.

4. Discussion

HL is an extremely heterogeneous trait with over 100 known genes,
which are rarely related to a distinctive phenotype. Lack of precise DNA
diagnostics is a major obstacle for patient monitoring and genetic
counseling in the family [36]. Fortunately, NGS has provided the op-
portunity for DNA testing in a time-saving manner [37,38]. Moreover,
it reduces the expenses to one third in comparison with other routine
genetic diagnostics methods [36].

Following the guidelines release by the ACMG for hearing loss [39],
in the first tier of diagnosis, direct sequencing of the GJB2 gene was
performed. In addition, we performed the genetic linkage analysis of
DFNB1A/B to rule out the most common cause of the disease. In the
next step, WES was done, which upon further investigations unraveled
a novel pathogenic nonsense variant co-segregating with the disease in
the pedigree.

The TMC1 gene is responsible for both autosomal recessive and
dominant HL at DFNB7/11 and DFNA36 loci, respectively. This gene is
located on chromosome 9q21.13 containing 24 exons, including 4
noncoding exons upstream of a methionine codon in exon 5. The pro-
tein encoded by this gene is predicted to contain 6 transmembrane
domains with a cytoplasmic orientation of the N and C termini [40].
Although the amino acid sequence is completely known, the protein
function is unclear. It was suggested that Tmc1 might be an ion channel
or transporter which mediates K+ homeostasis in the inner ear [41].
Animal model studies have shown an orthologous recessive deafness
locus for DFNB7/11 on mouse chromosome 19 causing profound HL
[42]. The difference between them is 57 amino acids of Tmc1 (exon 14)

Fig. 1. Pedigree of the family. This figure shows pedigree of family Ahv-18 with ARNSHL. In this pedigree, white symbols: unaffected; black symbols: affected;
squares: men; circles: females; parallel lines: consanguineous marriage. Symbols w/m and m/m demonstrate genotype wild type/mutant and mutant/mutant re-
spectively. Selected patient for exome sequencing is indicated as proband.
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deleted in dn mice.
The TMC1 gene is transcribed in human fetal cochlea and inner-ear

tissue of postnatal mouse. The N- and C- termini of Tmc1 are unlikely to
be tightly folded into a single and stable conformation. The distinct
clusters of alternating opposite charge in the N terminus suggest an
accordion model in which electrostatic interactions mediate the re-
versible association of adjacent clusters. Alternatively, these interac-
tions may mediate the association of the entire domain with a similar
domain on another polypeptide [40]. The TMC1: c.256G > T
(p.Glu86*) is located on the first intracellular (IC1) region with high
proportion of charged amino-acid residues in a relatively conserved
nucleotide sequence across the mammals. This nonsense mutation lead
to an early truncated protein; it is expected to cause HL due to non-
sense-mediated decay or loss of downstream functional domain. Stop
codon mutations in nucleotides closed to the end of sequence might
have no major effect on protein level but disturb the transcription rate,
the efficiency of mRNA processing or transport to the cytoplasm, or
mRNA stability [43]. Furthermore, multiple sequence alignment of
human TMC1 protein across other species revealed downstream re-
sidues are conserved, too. This fact indicates the importance of these
residues in protein function and proper conformation. Loss of these
amino acids might adversely influence natural function of the protein.

Based on the ACMG-AMP guideline [44], the variant is categorized
as pathogenic: it is a nonsense variant at early positions (PVS1), it is
absent in controls (PM2) and is co-segregating with the phenotype in
the pedigree (PP1). Due to this guideline and combination of three
evidences, 1 very strong (PVS1), 1 moderate (PM2) and 1 supporting
criteria (PP1), it can be concluded that this variant is pathogenic.

Based on the known mutations in deafness genes, TMC1 is the sixth
most common cause of recessive HL worldwide and in Indian, Pakistani,
Turkish, and Tunisian families, it is a common cause of recessive HL
with prevalence of 2%, 3.4%, 6% (in another study 8%) and 4%, re-
spectively [40,45–49]. TMC1 mutations are considered to be common
causes of ARNSHL in Iran with prevalence of 2%–2.2% [50–52].
However, in some ethnicities such as Moroccan Jewish population,
higher prevalence of approximately 38% has been observed [41]. The

variety of the identified mutations in the TMC1 gene among Iranian
ARNSHL families represent allelic heterogeneity among Iranian
DFNB7/11 families [28,32]. All the mutations that have been identified
to date are presented in Table 1. According to Table 1, here we report
the 12th nonsense variant in the TMC1 gene causing ARNSHL. Except
our variant, two pathogenic stop gain variants have been reported in
exon 8 [40,53].

By far, the most common recessive mutation for ARNSHL in the
TMC1 gene is p.R34X (c.100C > T) [54]. This mutation has been re-
ported from several different populations such as Lebanon, Algeria,
Iraq, Pakistan, Tunisia, Turkey and Iran [40,45,47,54–57]. Two dif-
ferent haplotypes associated to this variant was identified in these po-
pulations [57]. Only one non-coding variant with pathogenic role in the
TMC1 gene has been identified in an Iranian family. Variant g.94615
lies in exon3 of TMC1 and may be located in the regulatory region or
promoter of TMC1 [54].

In summary, applying WES, we identified a novel pathogenic var-
iant (c.256G > T) in a large Iranian ARNSHL family. The DFNB7/11
HL seems to show a significant allelic heterogeneity among Iranian
families studied so far.
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Fig. 2. Electropherogram showing the heterozygous (top) and homozygous (bottom) variant in c.256 position.
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Table 1
Overview of all TMC1 mutations so far identified.

Coding region variation Protein Exon (E)/Intron (I) Type of variant domain Phenotype Origin and ref.

−259 C > T – E3 Regulatory – severe to profound Iran [54]
100 C > T p.R34X E7 Nonsense IC1 Profound Pakistan [40]
236 + 1 G > A – I7 Splice site – NA Iran [48]
2471a G > T p.E83X E8 Nonsense IC1 severe to profound [53]
295 delA – E8 Deletion IC1 severe-to-profound Pakistan [40]
4582 G > A p.W153X E9 Nonsense NA NA Belgium [58]
534 A > C p.E178D E11 Missense NA severe to profound Turkey [59]
5453 G > A p.Gly182Asp E11 Missense NA severe to profound [53]
582 G > A p.W194X E11 Nonsense NA NA Turkey [48]
5894 G > A p.G197R E11 Missense TM1 NA China [60]
596 A > T p.N199I E11 Missense NA Moderate to severe pakistan [61]
767 delT p.F255FfsX14 E13 Deletion EC1 severe to profound Turkey [54]
776 A > G p.Y259C E13 Missense EC1 NA Turkey [54]
800 G > A p.G267E E13 Missense EC1 severe to profound india [62]
8045 G > A p.W268X E13 Nonsense NA NA Turkey [49]
821 C > T p.P274L E13 Missense TM2 Profound turkey [46]
830 A > G p.Y277C E13 Missense TM2 severe to profound pakistan [63]
1080_1084 delGATCA p.R362PfsX6 E15 Deletion IC2 NA Turkey [48]
1083_1087 delCAGAT p.R362PfsX6 E15 Deletion IC2 severe to profound turkey [46]
1107 C > A p.N369K E15 Missense NA severe to profound China [64]
1114 G > A p.V372M E15 Missense TM3 severe to profound pakistan [63]
1165 C > T p.R389X E15 Nonsense EC2 Profound Sudan [65]
1166 G > A p.R389Q E15 Missense EC2 severe to profound turkey [54]
11714 C > T p.Q391X E15 Nonsense EC2 profound China [60]
1209 G > C p.W403C E15 Missense NA severe to profound China [64]
12106 T > C p.W404R E15 Missense NA Profound Jewish Moroccan [41]
1247 T > G p.L416R E16 Missense NA severe to profound [53]
1283 C > A p.Ala428Asp E16 Missense NA severe-to-profound India [66]
1330 G > A p.G444R E16 Missense TM4 NA Turkey [48]
1333 C > T p.G445R E16 Missense TM4 NA turkey [48]
1334 G > A p.R455H E16 Missense TM4 severe to profound turkey [63]
1396_1398 delAAC p.466del E16 Deletion TM4 severe to profound China [67]
1404 + 1 G > T – I16 Splice site – Moderate to severe/severe to profound pakistan [61]
1405–13 C > G – I16 Splice site – severe to profound india [62]
1534 C > T p.R512X E17 Nonsense NA severe-to-profound pakistan [40]
1566 + 1 G > A – I17 Splice site – severe to profound india [62]
1566 + 4 delA – I17 Splice site – severe to profound india [62]
1586_1587 delTC E18 Deletion NA sever to profound iran [68]
1589_1590 del CT p.S530X E18 Deletion NA profound iran [69]
1685_2280 del – E19–24 Deletion Na sever to profound turkey [45]
1703 A > G p.Y568C E19 Missense NA Profound iran [68]
17187 T > A p.I573 N E19 Missense NA NA Ecuador [49]
1763+32 A > G p.W588WfsX81 I19 splice site TM6 NA Netherland [58]
1764 G > A p.W588X E20 Nonsense IC2 profound [56]
1788 C > A p.S596R E20 Missense IC2 Moderate to severe Pakistan [61]
1808 T > A p.L603H E20 Missense IC2 profound Qatar
1810 C > G p.R604G E20 Missense IC2 profound Morocca [70]
1809 C > T p.R604G E20 Nonsense IC2 NA Greece [54]
19396 G > T p.S647P E20 Missense TM6 profound Jewish Morocca [41]
1959 C > G p.Y653X E20 Nonsense TM6 NA turkey [49]
1960 A > G p.V654M E20 Missense TM6 severe-to-profound pakistan [40]
1979 C > T p.P660L E20 Missense TM5-6 severe to profound china [71]
20271 T > A p.V676Asp E21 Missense NA severe to profound [53]
2030 T > C p.I667T E21 Missense EC3 severe to profound turkey [40]
20505 G > A p.D684 N E21 Missense EC3 severe to profound turkey [49]
2050 G > C p.D684H E21 Missense EC3 severe to profound turkey [59]
2130–17 delG – I22 Splice site NA NA Ecuador [49]
E14-153 del – – Large deletion NA severe to profound [53]
E19-24 del – – Large deletion NA severe to profound turkey [48]

a The Superscript numbers represent the heterozygote variants.
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