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A B S T R A C T

In this paper, a novel approach is introduced for integrating multiple feature selection criteria by using hidden
Markov model (HMM). For this purpose, five feature selection ranking methods including Bhattacharyya dis-
tance, entropy, receiver operating characteristic curve, t-test, and Wilcoxon are used in the proposed topology of
HMM. Here, we presented a strategy for constructing, learning and inferring the HMM for gene selection, which
led to higher performance in cancer classification. In this experiment, three publicly available microarray da-
tasets including diffuse large B-cell lymphoma, leukemia cancer and prostate were used for evaluation. Results
demonstrated the higher performance of the proposed HMM-based gene selection against Markov chain rank
aggregation and using individual feature selection criterion, where applied to general classifiers. In conclusion,
the proposed approach is a powerful procedure for combining different feature selection methods, which can be
used for more robust classification in real world applications.

1. Introduction

DNA Microarray is a well-known technology that allows the si-
multaneous observation of the expression levels of thousands of genes.
In the recent years, gene expression data is widely used in different
fields including medicine and especially cancer. In cancer classification,
finding hidden patterns in the expression profiles can increase the
prediction accuracy. Meanwhile, curse of dimensionality problem re-
mains as a main challenge. Dimensionality reduction methods are
generally divided into two categories: feature extraction or transform-
based methods [1–3] and feature selection methods [4–7] which are
considered in this study. Feature selection is used for removing re-
dundant and irrelevant features which are not informative and do not
improve the classification performance. The benefits of feature selec-
tion include: (1) providing a low-complexity model by reducing model
parameters, (2) avoiding over-fitting and improving the generalization
performance, (3) decreasing required time for model training by re-
ducing the number of features, (4) reducing the cost for collecting and
storing data, and (5) gaining a deeper realization about the underlying
processes that generated the data [8–10]. From the classification point
of view, feature selection techniques can be divided into three groups of
filter, wrapper and embedded methods [9]. Filter method, which is a
learning-free technique, uses different statistical tests to determine the

subset of features with the highest score obtained by an objective
function [11,12]. Wrapper methods explore for the best feature subset
in combination with a specific classifier model [13]. Wrapper methods
typically give more accurate results, but they do more computations to
search for the best features. Similar to wrapper methods, embedded
methods [14] are assigned to a learning algorithm. They incorporate
feature selection and the learning part of model in such a way that
searching for an optimal subgroup of features is combined with the
construction of classifier. The advantage of embedded methods is that
they choose highly informative feature subsets for a specific model;
moreover, they have less computational cost than wrapper methods
[9,14].

Feature ranking is used in many feature selection methods as their
principal or auxiliary selection mechanism. In this regard, features are
ranked according to the relative score values computed by a criterion
function, then a small number of top ranked features are selected as the
most informative features. Feature ranking has several advantages, such
as: its simplicity, scalability, and good empirical success for a variety of
real-world applications [15,16].

Microarray data analysis and proteomic patterns exploration are
important examples of feature ranking applications [17–19]. Feature
ranking is conventionally performed by an individual criterion, which
scores features according to their information content. Therefore, rank
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of features depends on selected criterion and choosing an appropriate
criterion will be crucial. Nguyen et al. proposed a novel method called
modified analytic hierarchical process (AHP) to select prominent gene
subsets for cancer classification using DNA microarray data [20–23].
Their method deals with five individual gene ranking methods: En-
tropy, receiver operating characteristic curve, signal to noise ratio, t-
test, and Wilcoxon and combines them to get better performance in
feature selection. Modified AHP yielded stable gene subsets that were
informative features applied to different classification models. How-
ever, the integration procedure used by modified AHP is simplistic and
do not consider statistical dependency among different ranking criteria.
Here, we introduce a novel feature selection method that combines five
feature ranking criteria, considering their relevance, by HMM. To the
best of author's knowledge, this is the first presentation of HMM for
feature selection in microarray gene expression profiles analysis.

The paper is organized in four sections. Section 2 describes our
proposed method. Evaluation of the proposed method and the obtained
results are expressed in Section 3. Finally, the paper is concluded in
Section 4.

2. Methods

Many standard analytical techniques are inappropriate or compu-
tationally infeasible for analyzing high- throughput data. However, the
dimension of data can be reduced by eliminating non-relevant and non-
discriminative genes that do not participate in a specific biological
phenomenon. The use of non-associated genes in data analysis enlarges
the dimension of problem, increases the computational cost, and inserts
misleading noise in the model. Thus, it is crucial to select a small set of
associated genes, called informative genes, to have an acceptable per-
formance in classification. The proposed method is based on fusion of
different ranking criteria by HMM. This method assembles prominent
discriminative features from different features ranking methods
through the structure of HMM.

2.1. Feature ranking criteria

A feature-ranking criterion can be used to determine which avail-
able features are more appropriate for classification. Subsequently,
features can be selected from the feature list ordered by the criterion
function. In the following, some well-known feature ranking criteria
used in our method are defined.

2.1.1. Two-sample t-test
The two-sample t-test is one of the prevalent filter methods for

feature selection. The t-test method evaluates whether the means of two
classes are statistically significant different from each other [24]. The t-
test score is expressed by:
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where sample means of two classes are indicated by μ1 and μ2; σ1 and σ2
are the sample standard deviations; n1 and n2 are the sample sizes.

The t-test score is calculated on each feature by dividing the ex-
pression levels according to the class label and the feature with higher
score value is more informative in contrast other features.

2.1.2. Entropy test
The relative entropy between two probability distributions on a

random variable, is a measure of the distance between them [25]. The
entropy score for each feature is calculated by the following relation:

= + + +e µ µ1
2

1 1 ( )1
2

2
2

2
2

1
2

1
2

2
2 1 2

2

(2)

μ1, σ1, μ2 and σ2 are the mean and standard deviation of samples in class
1 and class 2, respectively. For each feature, the entropy score is cal-
culated and features will be sorted according to their scores.

2.1.3. Receiver operating characteristic (ROC) curve
A receiver operating characteristic (ROC) curve is a graphical

scheming of the true positive rate vs. the false positive rate for a binary
classification model, when its decision threshold is varied. The area
under the ROC curve (AUC) is a measure of how well a parameter can
distinguish between two classes. The larger is the AUC, the less is the
error of classification. In feature ranking application, features with the
highest AUC are selected [26].

2.1.4. Wilcoxon method
The Wilcoxon signed rank sum test is used to test the null hypothesis

that the median of a distribution is equal to a specific value {Nguyen,
2015 #164}[27]. Wilcoxon, which is a non-parametric test, can be used
instead of the t-test to produce a null hypothesis in cases when the
observation does not follow normal distribution.

The three-steps procedure of the Wilcoxon test is described below
[28]:

1. Combine all observations from the two populations and sort them
in the ascending order.

2. Calculate the Wilcoxon statistic by adding all the ranks related
with the observations from the smaller population.

3. Finally, select the features whose p-values are smaller than the
significance level threshold.

By employing the absolute values of the standardized Wilcoxon
statistics as the feature scores, we can use the Wilcoxon test for feature
selection.

2.1.5. Bhattacharyya distance
Bhattacharyya distance is generally used for measuring the simi-

larity of two continuous or discrete probability distributions. The
Bhattacharyya distance between two classes under the normal dis-
tribution can be calculated by the following [29]:
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where sample means are indicated by μ1 and μ2 in class 1 and class 2,
respectively and its corresponding, sample standard deviations are in-
dicated by σ1 and σ2.

2.2. Markov chain rank aggregation

Andrey Markov introduced the Markov chain in 1906 and used the
term “chain” for the first time when he was working on the theory of
stochastic processes [30,31]. In mathematics generally, probability
theory and statistics the term Markov property refers to random process
characterized as memoryless: the next state depends only on the current
state and do not depend on the sequence of events that happened be-
fore. Markov chain used in many applications and statistical modeling
such as page rank, which was utilized for Google search engine. A
Markov chain model is determined by a set of states; S = {1, 2, … , |S|}
and a non-negative stochastic (sum of each row is 1) matrix T of size |S|
× |S| defines the probability of the systems’ transitions from one state
to another. To solve the steady-state transition probabilities, it is ac-
ceptable to either calculate the dominant eigenvector or use the power-
iteration algorithm [32].

Markov chain rank aggregation is one of the most commonly pair-
wise comparison ranking methods [33]. The most popular example of
Markov chain ranking method is ranking of web pages in Google search
engine. In our case, the states of the chain correspond to the N features
to be ranked and the transition probabilities are based on the positions
of the features in each feature-ranking criterion. The transition matrix
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of the Markov chain rank aggregation can be obtained by implementing
the following instructions [32,34]:

1. Construct the set of states S corresponds to the list of all features to
be ranked, i.e., the set of all features that ranks with each criterion
U={c1, c2, … , cn}

2. For each pair of features i and j in U, let the component t*ij equal 1 if
most criterion ranked j higher than i, and 0 otherwise. If features i
and j are not directly compared, let t*ij = t*ji = 0.5

3. Describe the transition matrix T = {tij} as fallow: for i ≠ j set tij to t*ij
/ |U| and let tii = 1-∑ j≠i tij.

4. Multiplying each component by (1 – ε) to make the transition matrix
ergodic and then adding ε / |U| to each component, where ε has a
small, positive value.

After constructing the transition matrix, to find rating vector for
feature ranking, either calculate the dominant eigenvector of transition
matrix, or use the power method to obtain the steady-state probability
vector.

2.3. Hidden Markov model

Baum et al. have introduced the HMM in the late 1960s [35–38].
HMM is a powerful statistical Markov model, which can be used, in a
wide range of applications in which the system being modeled is sup-
posed to be a Markov process with unobserved states. Each state of
HMM has a probability distribution over the possible output symbols.
Therefore, the sequence of generated symbols by an HMM gives some
information about the hidden states.

Generally, HMM is determined by five elements of states, state
probabilities, initial probabilities, transition probabilities and emission
probabilities that are defined as following [39]:

1. The N states of the model are defined in S as:

=S S S{ , , }N1 (4)

2. The M observation symbols per state are defined by:

=V { , , }M1 (5)

3. The state transition probability distribution, also called transition
matrix A = {aij}, representing the probability of going from state Si
to state Sj:

= = =+a P q S q S i j N{ | }, 1 ,ij t j t i1 (6)

where qt denotes the current state.
The transition probabilities should satisfy the following constraints:

=
=
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4. The observation symbol probability distribution in each state, also
called emission matrix E = {ej (k)} where ej (k) is the probability
that symbol vk is emitted in state Sj .

= = =e k P o q j j N k M( ) { | }, 1 , 1j t k t (8)

where vk represents the kth observation symbol in the alphabet, and Ot
the recent parameter vector.

The following constraints should be satisfied:

=
=
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5. The initial state probability distribution π = {πi}, representing

Fig. 1. HMM topology for proposed feature selection method.
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probabilities of states in t= 0.

= =p q i i N{ }, 1i 1 (10)

We indicate an HMM with parameter set λ = (A; E; π), which
completely describes the model. These parameters are used to solve
three well-known fundamental problems of HMMs [39]. First in the
evaluation problem of HMM, forward or backward algorithm is used to
calculate P{O|λ}, i.e. the probability that the given observation se-
quence O={o1 ,o2 ,…,oT} is generated by the model λ. Second in the
decoding problem of HMM, Viterbi algorithm is applied to solve the
second problem. Viterbi computes most likely state sequence associated
with the given observation sequence and the model λ. Third in the
learning problem of HMM, Baum Welch algorithm is used to train the
HMM or to adjust the model parameters (A; E; π) in order to maximize
P{O|λ} given a sequence of observation and model λ.

In the proposed architecture, each hidden state of the HMM re-
presents the probability that the best features are related to one of
criterion and the feature rank (feature position) obtained by each cri-
terion represents the corresponding sequence of observation. Fig. 1
shows the topology of the proposed structure, which illustrates states,
observations and how they are connected to each other.

2.3.1. Transition matrix definition
According to the proposed architecture, shown in Fig. 1, the tran-

sition probabilities between states will be equal to the percentage of
common high-ranked features observed between different criteria on
the training data. Therefore, the transition matrix is constructed con-
sidering overlap among the first (high score) one percent of all features
that ranked by 5 different ranking criteria in training data. As shown in
Fig. 2, every component of transition matrix represents normalized
number of common observations among different states of HMM, which
are pairwise common features obtained by each criterion. Fi indicates
one percent of high rank features selected by criterion i where i = {t
(t_test), e (entropy), r (ROC), w (Wilcoxon), b (Bhattacharyya)}. Nor-
malization was performed by dividing the number of common features
between two different criterions by sum of all overlapping features
between source criterion and other criteria. Thus, sumt, sume, sumr, sumw
and sumb indicate sum of all overlapping feature for t-test, entropy,
ROC, Wilcoxon and Bhattacharyya respectively as stated in the fol-
lowing:

=sum F F( )M M i M i (11)

By this structure sum of every row of transition matrix will be equal
to 1, so the probability of sample space or sum of probabilities is sa-
tisfied in the model. In this topology, the components on the main di-
agonal of transition matrix are equal to zero.

2.3.2. Emission matrix definition
Emission matrix represents probability distribution in each state

(matrix row) and indicate the probability that feature j (matrix column)
is emitted in state i, which is in concordance with each feature's rank

obtained by each state. In this regard, feature with higher rank will be
represented by a higher value in emission matrix. In order to satisfy
probabilistic properties in HMM, we convert rank of all features for
every criterion to a probabilistic score value by the following definition
to construct the emission matrix (E);

= >
=

E i j( , ) , 1
R i j

k
M R i k

( , )

1
( , ) (12)

where α is the base value of E(i,j), R(i,j) indicates rank of jth feature for
ith criterion, and M represents the number of features.

2.3.3. Learning
As mentioned in Section 2.2, Baum-Welch algorithm can be used to

adjust the HMM parameters for the best representation of observations
(feature rank obtained by each criterion in the training set) by the
model. The Baum–Welch algorithm is a special case of Expectation-
Maximization (EM) algorithm [40] and used to find the unknown
parameters of an HMM. We describe Baum-Welch algorithm by de-
fining several auxiliary variables [41]. The first one of these variables
is:

= = =+i j p q i q j O( , ) { , | , }t t t 1 (13)

which can also be written as:

=
= =+i j

p q i q j O
p O

( , )
{ , , | }

{ | }t
t t 1

(14)

The forward variable αt(i) is defined as follows:

= =i p O O O q i( ) { , , , , | }t t t1 2 (15)

where O1, O2 ,…,OT are partial ranking sequences. The recursive re-
lationships are as follow:

=+ +
=
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i

N

t ij1 1
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The backward variable βt(i) can be defined similarly:

= =+ +i p O O O q i( ) { , , , | , }t t t t t1 2 (18)

If the current state is i, βt (i) is the probability of the partial ranking
sequence OT+1 ,OT+2 ,…,OT. βt (i) can also be computed by using the
following recursive formula:

=
=

+ +i j a e o i N t T( ) ( ) ( ), 1 , 1 1t
j

N

t ij j t
1

1 1
(19)

where

=i i N( ) 1, 1t (20)

We can now calculate the ξt (i,j) variable using forward and back-
ward variables:

= + +

= = + +
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Another variable is the a posteriori probability,

= =i p q i O( ) { | , }t t (22)

In forward and backward variables this can be indicated by (23).

=
=

i
i i

i i
( )

( ) ( )
( ) ( )t

t t

i
N

t t1 (23)

The relationship between γt (i) and ξt (i, j) is given by (24).
Fig. 2. Transition matrix structure for proposed HMM-based feature selection
method.
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Baum-Welch learning process is used to maximize p{O|λ} and de-
termine HMM parameters using iterative EM algorithm, by assuming a
starting model λ = (A,E,π) and calculating the forward and backward
variables. Afterwards, the values of ξ and γ are calculated. The fol-
lowing equations are known as Baum-Welch re-estimation formulas,
which are used to update the HMM parameters:

= i i N¯ ( ), 1i 1 (25)
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We repeated the sequence of the above steps until 100 levels of
convergence is achieved.

2.3.4. Multi-criteria feature ranking
After using Baum-Welch method and getting the HMM parameters,

we consider the combination of values for the emission matrix elements
as feature scores. In this regard, we added top score of all features (each
column of emission matrix) for each state. It is expected that the larger
the score, the better the feature will be. For every feature, we calculate
the mean of the normalized values of emission matrix (column-wise)
from all criteria and construct the scores as fallowing:

=
=n

eScore 1
j

i

n

ij
1 (28)

where eij denotes emission matrix component (E= [eij]) that estimated
by Baum-Welch method, n represents the number of criteria and Scorej
indicates the score of individual feature j. After calculating the scores of
all features, they are sorted in descending order and a new ranking for
all features is obtained.

3. Experimental results

3.1. Evaluation metrics

Since the number of samples in our datasets is low, the leave one out
cross validation (LOOCV) is used for evaluation. In each trial, LOOCV
uses a single sample from the original data as the validation data, and
the residual samples are used for training. This is repeated such that
each sample in the data is used only once as the validation data. In
other words, LOOCV is a special case of k-fold cross validation where k
equals the number of samples in the data and each sample in the data is
used exactly once for validation [42–44].

AUC (area under the receiver operating characteristic curve) is used
to measure the effectiveness of classification. AUC is a widely used
evaluation criterion to describe a diagnostic test especially for binary
classification. To obtain reliable performance estimation and robust
comparison among feature selection methods, large number of esti-
mates are always preferred. Therefore, we increase the number of es-
timates by 20 times repeating of LOOCV cross-validation.

3.2. Experimental datasets

Three benchmark datasets used for experiments consist of diffuse
large B-cell lymphomas (DLBCL) [45], leukemia cancer [46] and
prostate [47]. In the first dataset, DLBCL and follicular lymphomas (FL)

are two malignancies to be classified. The DLBCL dataset includes 7070
genes of 77 samples, where 58 samples are affected by DLBCL and the
others have FL. The classification models are constructed using gene
expression profiles to distinguish between these two lymphomas. The
leukemia dataset comprises of acute lymphoblast leukemia (ALL) and
acute myeloid leukemia (AML) samples from bone marrow and per-
ipheral blood. This dataset contains 72 samples (47 ALL and 25 AML)
where expressions are measured over 7,129 genes. In the third dataset,
there exist 102 samples (50 normal and 52 prostate tissues samples)
where each expression profile contains 12,533 genes. All the gene
profile datasets are normalized by the quantile normalization technique
[48].

3.3. Model parameters

3.3.1. Initialization and weighting
Identification of the best state for selecting the best features from a

particular database is not straightforward and should take into account
the nature of data. This task assigned to the proposed HMM model,
however, initially the same level of importance was considered for each
state. Hence, the value of 1/5 is assigned to each state for initial state
probability distribution in HMM, because we used 5 criteria in this
experiment.

3.3.2. α-parameter
α-parameter in (12) should be defined for construction of emission

matrix. If we select α value close to 1, the score values of top rank
features would be low and intervals between score values are shrunk.
For greater values (e.g.> 4), the scores values for the high rank fea-
tures would be greater and intervals between score values is increased,
which may lead to missing middle and low rank features due to very
low score values (approximately zero). The optimum range of values for
α-parameter is between 1 and 4 which can be tuned for different da-
tasets.

3.3.3. Number of features
Feature selection chooses a less number of features from the initial

feature set without changing the original properties of features [9]. To
make an appropriate comparison between the proposed HMM feature
selection model and other feature selection methods (t-test, entropy,
ROC, Wilcoxon, Bhattacharyya distance and Markov chain), we applied
different number of features (5, 10, 15 and 20) to classifier. For eval-
uating the effect of number of features on the classification perfor-
mance, we used k-nearest neighbors (kNN) and support vector machine
(SVM) as classifiers that are widely used in gene expression classifica-
tion [11,49]. The number of nearest neighbors in the kNN is chosen to
be k=5, and the linear kernel function is used for the SVM in all ex-
periments.

3.4. Results and discussion

Classification results on three datasets (i.e., DLBCL, leukemia, and
prostate) are demonstrated and discussed in this section. Fig. 3 shows
the results on DLBCL dataset that exhibits a higher performance of
HMM compared to other feature selection approaches using different
number of selected features. The mean and standard deviation across
replicates of AUC for different number of features are 94.50 ± 0.29,
91.12 ± 1.59 and 89.09 ± 1.52 for the proposed method, Wilcoxon
and Markov chain respectively. According to Fig. 3a and Fig. 3b, the
Wilcoxon method is in second place among all evaluated methods. Even
though the Markov chain is a common rank aggregation method,
yielded poor performance.

Fig. 4 illustrates the results obtained on leukemia dataset in which
the proposed method reached the top AUC among all methods. Fig. 4a
demonstrates that feeding extracted features by HMM to SVM results in
AUC of 100% over 5, 10 and 15 selected features in leukemia dataset.
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Fig. 4b represents that ROC obtained the best performance over 5 se-
lected features using 5-NN classifier. Wilcoxon method achieved the
worst performance in leukemia dataset. Also our HMM based method
has an AUC of 99.86 ± 0.27 across different selected features in leu-
kemia dataset using SVM as classifier. The corresponding values for the
ROC and Wilcoxon are 99.29 ± 0.54 and 87.80 ± 1.51 respectively.

Classification results of prostate dataset are illustrated in Fig. 5 and
HMM exhibit best performance for various numbers of selected fea-
tures. Fig. 5a demonstrates that t-test, Bhattacharyya distance and
Markov chain have same performance over different numbers of fea-
tures. Moreover according to Fig. 5a the best performance of proposed
HMM method is obtained by selecting 10 features in SVM classifier.
Fig. 5b illustrate that entropy reached the worst performance in pros-
tate dataset by 5-NN classifier. Also according to Fig. 5b, HMM has the
best performance by 15 features. Moreover, it can be observed that in
the selected range of feature numbers, the variation of AUC is not no-
ticeable in our model. The AUC across different selected features is
about 92.10 ± 1.32 for the proposed method in the prostate dataset
using the SVM. These values for the Wilcoxon and ROC, which have
second and third place, are 90.34 ± 1.54 and 89.18 ± 2.078, re-
spectively.

In addition, we conclude from Fig. 3, Fig. 4 and Fig. 5 that proposed
HMM yields best results over all number of features and slope of
changes in AUC results is the lowest for HMM, which proves the sta-
bility and less variation of our model across different selected features.
Also using lower number of features, HMM obtained better perfor-
mance in contrast to other methods.

Every feature selection method may have its own best performance

by a different number of features in each dataset. However, our HMM-
based method showed less variation in different datasets using different
number of features. The proposed multi-criteria decision making
method incorporates patterns and advantages of every constructive
method. In this regard, transition matrix constructed by considering
overlap between different method’s outcomes, represents the associa-
tion among individual states. This procedure is more realistic than the
technique presented by Nguyen [20–23], modified AHP, which con-
siders equal level of importance for each criterion. Furthermore, the
modified AHP reached the maximum AUC of 94.77 ± 3.98,
88.62 ± 3.13 and 88.75 ± 2.99 in the DLBCL, leukemia, and prostate
datasets respectively by the SVM classifier using five selected genes.
The corresponding values for the proposed HMM-based method are
95.22 ± 1.56, 100.0 ± 0.00 and 91.73 ± 0.48. Therefore, the pro-
posed method showed better performance and robustness compared to
the modified AHP. This is a fair comparison because the utilized data-
sets are the same in these researches. Moreover, the proposed HMM-
based method compared with Markov chain rank aggregation in a way
that both approach was used a combination of similar methods and use
Markov property in their structures. Markov chain rank aggregation
uses pairwise comparisons between the features to determine rankings
and operates based on voting between ranking methods. While our
HMM-based approach uses overlapping among the first one percent of
all features that ranked by ranking methods in the form of transition
probability between hidden states. However, the results obtained from
Fig. 3, Fig. 4 and Fig. 5 show that the HMM-based method has a much
better performance than the Markov chain rank aggregation across
different number of selected features. Also, AUC results of the Markov

Fig. 3. Classification results for DLBCL datasets over different number of selected features: (a) DLBCL classification with SVM, (b) DLBCL classification with 5-NN.

Fig. 4. Classification results for leukemia datasets over different number of selected features: (a) Leukemia classification with SVM, (b) Leukemia classification with
5-NN.
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Fig. 5. Classification results for prostate datasets over different number of selected features: (a) Prostate classification with SVM, (b) Prostate classification with 5-
NN.

Fig. 6. Boxplot comparisons among feature selection methods over 10 selected features: (a) DLBCL classification with SVM, (b) DLBCL classification with 5-NN, (c)
Leukemia classification with SVM, (d) Leukemia classification with 5-NN, (e) Prostate classification with SVM, (f) Prostate classification with 5-NN.
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chain showed much more variation than our HMM-based method across
different selected features, which reflect the better stability of the
proposed method.

Fig. 6 shows boxplots illustrating the performance comparisons in
the form of AUC among HMM and other feature selectors over 10
features. We observed a noticeable dominance of the HMM against
other feature selection methods in all three datasets. Furthermore, small
interquartile varieties of the HMM boxes compared to other methods
display smaller standard deviations and demonstrates the robustness
and greater stability of HMM compared to other feature selection
methods.

4. Conclusions

In this paper, we presented a novel feature selection method based
on HMM for cancer classification using gene expression data. This
method was developed by combining five different feature ranking
methods including: t-test, entropy, ROC, Wilcoxon test and
Bhattacharyya distance in the topology of HMM. Our experiments im-
plemented on three benchmark datasets and for better estimation
LOOCV cross-validation was repeated 20 times. Classification perfor-
mance was evaluated by AUC evaluation metric. Classification results
demonstrated that HMM yields the best performance compared to five
mentioned feature ranking methods and Markov chain rank aggrega-
tion method. Moreover, smaller standard deviation results proved that
HMM was the most robust method compared to other feature selection
methods. It also provided stable results over different number of se-
lected features. In the future research, we would like to extend our
HMM-based method using more feature selection methods to get better
results.
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