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Abstract
The purpose of this research was to optimize a newmethod for preconcentration and determination of trace iron concentrations in
aqueous solutions. For this purpose, a newly synthesized ligand, 3-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) benzoic acid (3-
OH-3-MOPBA), was used in the dispersive liquid-liquid microextraction (DLLME) method coupled with UV–vis spectroscopy.
The experiments considering input variables of extractant volume, disperser volume, salt concentration, and pH were designed
with the aid of central composite design (CCD). The results were analyzed using response surface methodology (RSM). The limit
of detection (LOD) was found to be 4.0 μg L−1 under the optimized conditions. A calibration curve with a good linearity (R2 =
0.9986) was obtained over the concentration range of 15–800 μg L−1. The relative standard deviations (RSD) were found to be
around 2.1% (n = 7). The main advantages of the developed method are simple application, environment friendly, short time, and
low cost which makes this method to be applied routinely for measuring iron in various water samples.
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Introduction

Undoubtedly, iron has an essential role in many metabolic
functions in the human body. Fe is involved in a wide range
of metabolic and synthetic pathways including DNA synthesis,
oxygen transport and storage, mitochondrial respiration, and
citric acid cycle [1, 2]. Due to the important role of iron in
the human body, its disorder (overload or deficiency of iron)
causes a variety of diseases [3–5]. Therefore, the determination
of iron ions in trace amounts in variety of matrices, especially in
aqueous samples, has been subject of many studies [6–11].
Several analytical techniques such as flame atomic absorption
spectrometry (FAAS) [12], ICP-mass spectrometry (MS) [13],

inductively coupled plasma-optical emission spectrometry
(ICP-OES) [14], chromatography [15], and UV–vis spectro-
photometry [16–18] have been used for the speciation of iron.

Since various analytical techniques are unable to directly
measure very low amounts of iron, many separation and
preconcentration methods, including coprecipitation [19], sol-
id phase extraction [20], electro-analytical methods [21], and
liquid-liquid extraction [22] were manipulated. One of the
methods that is widely used for preconcentration and separa-
tion metal ions and organic compounds is the dispersive
liquid-liquid microextraction method [23–29]. There is a re-
cent review article on the latest innovations and trends in
liquid phase microextraction techniques [30]. The dispersive
liquid-liquid microextraction techniques are derived from
three-component solvent system: homogeneous liquid-liquid
extraction and cloud point extraction methods [31]. It would
definitely be said that the most important feature of this system
is its solvent velocity. This feature is due to the high contact
between the aqueous solvent and the organic solvent that
causes the sample to be extracted in fractions of minutes from
the aqueous phase to the organic phase [32].

In the present study, a new method for the determination of
iron in small amounts by dispersive liquid-liquidmicroextraction
method coupledwithUV–vis spectrophotometrywas optimized.
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While most of the chelating agent applied to measure iron is
toxic, the newly synthesized ligand, 3-(3-hydroxy-2-methyl-4-
oxopyridin-1(4H)-yl) benzoic acid (3-OH-3-MOPBA) [33], in
this study is non-toxic and environment friendly [34]. In the
previous work, we used hydroxy pyridine derivatives as a che-
lating agent [35]. In comparison, the main advantages of the
current study include a much better limit of detection
(4μg L−1), the broader dynamic range (15–800μg L−1), optimal
pH (4.6) in terms of adjustment for acetate buffer, more environ-
ment friendly because of using ethanol as a disperser solvent,
and ultimately the most significant advantage is that these kinds
of ligands have been confirmed to be selective of iron ions in
aqueous matrices.

The use of multivariate optimization has been in-
creased in recent analytical chemistry studies [36–39].
This optimization method not only allows simultaneous
analysis of several parameters contemporaneously, but al-
so increases measurement performance and speed of anal-
ysis and, most importantly, reduces the number of exper-
iments that consequently results in saving time and money
[40]. One of the most widely used statistical methods that
is used for initial multi-variable optimization is the facto-
rial design method [41]. One of the most functionally
used designs in surface response is central composite de-
sign (CCD) [42]. The CCD is an experimental design,
useful in response surface methodology (RSM), for build-
ing a second order (quadratic) model for the response
variable without needing to use a complete three-level
factorial experiment [43]. In this study, the effective pa-
rameters for extraction and determination of iron ions in
the proposed DLLME method were optimized using CCD
and RSM. The RSM explores the relationships between
several explanatory variables and one or more response
variables. The main idea of RSM is to use a sequence of
designed experiments to obtain an optimal response [44].
The proposed optimal method is a selective method that
can be used simply (because of combination with
ultraviolet–visible spectroscopy) for routine determination
of iron concentrations in aqueous solutions.

Experimental

Instrumentation

The absorbance of the solutions was determined by
Shimadzu UV-160PC (Tokyo, Japan) spectrophotometer.
The solutions were centrifuged with A Hettich EBA 200
(Andreas Hettich GmbH & Co. KG, 78532 Tuttlingen,
Germany). Ultrapure water was prepared by a Milli-Q
water purification system (Millipore S.A.S. 67120
Molsheim-France). The pH was measured by InoLab®
pH meter (WTW; model 7110, Germany).

Software

MINITAB software was used for experimental design and
statistical analysis (MINITAB Release 17.3.1, Minitab, Inc.,
Pine Hall Road, State College, PA, USA).

Chemical and Standard Solutions

Analytical grade Fe(NH4)(SO4)2·12 H2O (Merck, Darmstadt,
Germany) in 1.0 mol L−1 HNO3 was used to prepare the stock
solution (Fe3+ (1000 mg L−1)). Diluted working standard so-
lutions were prepared every day from the stock solutions.
Buffer acetate (mixing an appropriate amount of sodium ace-
tate (analytical grade) and acetic acid solution (Merck,
Darmstadt, Germany-analytical grade) (0.5 mol L−1)) were
used to adjust the pH solutions (pH 2–8). Hydroxylamine
hydrochloride solution (NH2OH·HCl, analytical grade) 5%
(w/v) was from Merck (Darmstadt, Germany) and prepared
in a 100-mL volumetric flask by dissolving 5.0 g of the re-
agent in distilled water. Stock solution of 3-(3-hydroxy-2-
methyl-4-oxopyridin-1(4H)-yl) benzoic acid (3-OH-3-
MOPBA, analytical grade) (0.0045 mol L−1) was made by
dissolving an adequate amount of 3-OH-3-MOPBA in
10 mL of methanol (analytical grade). All organic and inor-
ganic reagents used in this study were obtained from Merck
(Darmstadt, Germany, analytical grade (≥ 99.0%)).

Analytical Procedure

In this procedure, a mixture of 150 μL of ethanol, 600 μL of
carbon tetrachloride, and 1 mL 4.5 × 10−3 mol L−1 of the li-
gand (3-OH-3-MOPBA) was injected to 5 mL of a sample of
water containing 80 μg L−1 of iron (including 0.7 mL of re-
ducing agent (NH2OH·HCl) 5% (w/v) and 1 mL of
0.5 mol L−1 acetate buffer (pH 4.5)). The effect of this injec-
tion is formation of a cloudy solution. Then, this cloudy solu-
tion is centrifuged at 4500 rpm for 3 min. Finally, the extrac-
tion phase was diluted in microcell 350 μL with ethanol, and
the light absorption was read as absorbance at λmax (546 nm)
against a reagent blank.

Calculations

In order to evaluate the impact of independent factors on
DLLME method, extraction recovery (R) and enrichment fac-
tor (EF) were calculated as follows:

R% ¼ Csed � Vsed

C0 � Vaq
� 100 ¼ EF � Vsed

Vaq
� 100 ð1Þ

EF ¼ Csed

C0
ð2Þ
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where R% is the extraction recovery, Vsed is the volume of the
sedimented phase, Vaq is the volume of the aqueous sample,
and Csed is the sedimented phase and was calculated from an
external calibration graph obtained by conventional liquid-
liquid extraction followed by spectrophotometric determina-
tion of iron ions.C0 represents the initial analyte concentration
in the aqueous sample.

Results and Discussion

A dispersive liquid–liquid microextraction procedure based
on the reaction between 3-OH-3-MOPBA as a chelating agent
and Fe was developed for separation and determination of
iron. To find the appropriate conditions for the proposedmeth-
od, multiple parameters were investigated.

In this research, parameters such as selection of extraction
and disperser solvents, volume of reducing agent, and chelat-
ing agent concentration by one variable at a time and param-
eters such as pH, extraction, and disperser volume were opti-
mized by response surface modeling methods. Also, the effect
of the added salt concentration was optimized by both one

variable at a time and response surface modeling methods,
which both methods confirmed each other.

After all of the above-mentioned parameters were opti-
mized, the extraction of iron with optimized parameters (ana-
lytical procedure) was performed.

One Variable at a Time Optimized

Selection of Wavelength

Figure 1 presents the results obtained from the analysis of the
ligand and complex absorption spectra. From this graph, the
two absorption bands at 546 and 662 nm could be observed
(according to the extraction conditions presented in the ana-
lytical procedure): the absorption spectrums of the reagent
blank (1 mL of 45 × 10−4 mol L−1 of 3-OH-3-MOPBA) (a)
and the complex (80 μg L−1 of Fe3+, 1 mL of 45 ×
10−4 mol L−1 of 3-OH-3-MOPBA, 150 μL CCl4, 600 μL
ethanol 0.7 mL 5%-NH2OH·HCL as a reducer agent and
1 mL of 0.5 mol L−1 acetate buffer (pH 4.5)) after optimized
DLLME technique (b).
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Fig. 1 The absorption spectrums
of the reagent blank (a) and the
complex (b) after proposed meth-
od. Extraction conditions:
80 μg L−1 of Fe3+, 1 mL of 45 ×
10−4 mol L−1 of 3-OH-3-
MOPBA, pH 4.5, 150 μL CCl4,
600 μL ethanol, 0.7 mL 5%-
NH2OH·HCL as a reducer agent,
and 1 mL of 0.5 mol L−1 acetate
buffer (pH 4.5)
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Fig. 2 Influence of extraction and disperser solvents kind on the
extraction recovery of iron obtain from proposed method. Extraction
conditions: 100 μL CCl4, 500 μL ethanol, 80 μg L−1 of Fe3+, 1 mL of

45 × 10−4 mol L−1 of 3-OH-3-MOPBA, 0.7 mL 5%-NH2OH·HCL as a
reducer agent, and 1 mL of 0.5 mol L−1 acetate buffer (pH 4.5)
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The observed bands (546 and 662 nm) are attributed to
the formation of Fe-(3-OH-3-MOPBA) complex. The

more intense band of 546 nm was selected for determina-
tion of iron concentration.

Selection of Organic Solvents

The choice of suitable organic solvents in the DLLME proce-
dure is very important. In this study, various organic solvents
including carbon tetrachloride, tetrachloroethylene, dichloro-
methane, and chloroformwere used as extraction solvent. (ex-
perimental conditions 80 μg L−1 of Fe3+, 1 mL of 45 ×
10−4 mol L−1 of 3-OH-3-MOPBA, 0.7 mL 5%-NH2OH·
HCL as a reducer agent, 1 mL of 0.5 mol L−1 acetate buffer
150 μL and pH (4.5)). Also, organic disperser solvents such as
acetone, acetonitrile, ethanol, and methanol were used.
Figure 2 shows the results of using different types of extrac-
tion and disperser solvents. The ethanol and methanol extrac-
tion efficiency are approximately the same. So, ethanol was
selected because it is non-toxic. Due to the fact that the mix-
ture of ethanol and carbon tetrachloride had the best extraction
efficiency, they were chosen as a disperser and extractor sol-
vents, respectively.

Influence of the NH2OH·HCl Concentration

To evaluate the impact of volume of hydroxylamine hydro-
chloride) 5%-NH2OH·HCL (on extraction recovery, various
volumes (0.1–2 mL) of reducer agent were used, while other
parameters were kept constant (experimental conditions:
80 μg L−1 of Fe3+, 1 mL of 45 × 10−4 mol L−1 of 3-OH-3-
MOPBA, 1 mL of 0.5 mol L−1 acetate buffer, pH (4.5),
150 μL CCl4, and 600 μL ethanol). At first, the extraction
efficiency increased by increasing the volume of reducing
agent to 0.7 mL. Then, a steady extraction efficiency was
observed in volume of reducing agent from 0.7 to 0.9 mL.
Finally, the increase in the volume of the reducing agent for
higher than 0.9 mL resulted in a decrease in the extraction
efficiency. Therefore, the volume of 0.7 mL was chosen as
the optimum volume of the reducing agent.

Table 2 The central composite design in various experimental and the
responses

Run no. A B C D R%

1 1 1 1 − 1 49.30

2 − 1 − 1 1 1 51.43

3 1 − 1 − 1 − 1 62.22

4 − 1 − 1 1 − 1 48.04

5 − 1 − 1 − 1 1 83.96

6 − 1 1 1 1 52.65

7 1 − 1 1 1 41.90

8 1 − 1 1 − 1 39.97

9 0 0 0 0 86.17

10 − 1 1 1 − 1 54.51

11 0 0 0 2 85.10

12 0 0 0 0 80.39

13 0 0 0 0 82.91

14 0 0 0 0 84.30

15 1 1 1 1 47.98

16 0 0 0 0 83.25

17 0 − 2 0 0 61.93

18 0 0 0 − 2 85.01

19 1 1 − 1 − 1 70.92

20 0 2 0 0 85.37

21 0 0 0 0 83.64

22 0 0 2 0 46.05

23 2 0 0 0 48.74

24 − 1 1 − 1 1 86.17

25 0 0 − 2 0 68.85

26 0 0 0 0 83.68

27 − 2 0 0 0 43.17

28 1 1 − 1 1 67.24

29 1 − 1 − 1 1 61.16

30 − 1 1 − 1 − 1 85.49

31 − 1 − 1 − 1 − 1 86.39

Table 1 Independent variables,
their symbols, and levels for CCD
and optimum conditions
predicted

Parameters Symbols Levels Predicted valuea

−α (low) − 1 0 center 1 +α (high)

pH A 2 3.5 5 6.5 8 4.6

Extractant solvent
volume (μL)

B 80 105 130 155 180 145.6

Dispersion solvent
volume (μL)

C 400 600 800 1000 1200 626.3

Salt (w/v %) D 0 1.25 2.5 3.75 5 0

a The predicted value of extraction recovery by CCD is 90.24%
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Influence of Salting-Out

The effect of ionic strength on the DLLME method was
studied by applying different concentrations of sodium
chloride (0–5% w/v), while other parameters were kept
constant (experimental conditions: 80 μg L−1 of Fe3+,
1 mL of 45 × 10−4 mol L−1 of 3-OH-3-MOPBA, 0.7 mL
5%-NH2OH·HCL as a reducer agent, 1 mL of 0.5 mol L−1

acetate buffer, pH (4.5), 150 μL CCl4, and 600 μL etha-
nol). The results indicated that the salt addition does not
affect the extraction efficiency. Therefore, all the experi-
ments were done without increasing the salt amount. This
issue has been reaffirmed with insignificant data in re-
sponse surface methodology section (multi-variation opti-
mized section).

Influence of 3-OH-3-MOPBA

The influence of chelating agent concentration on the re-
c ov e r y o f i r o n i on s wa s ev a l u a t ed ( 0 . 0001–
0.008 mol L−1), while other parameters were kept con-
stant (experimental conditions: 80 μg L−1 of Fe3+,
0.7 mL 5%-NH2OH·HCL as a reducer agent, 1 mL of
0.5 mol L−1 acetate buffer, pH (4.5), 150 μL CCl4, and
600 μL ethanol). The recovery increased by an increase of
the 3-OH-3-MOPBA concentration from 0.0005 to
0.0045 mol L−1, and then it remains constant. Therefore,
the 4.5 × 10−3 mol L−1 was selected as the optimal con-
centration of 3-OH-3-MOPBA.

Multi-variation Optimized

Response Surface Methodology and Selection of Optimum
Conditions

In this section, after primitive optimal conditions (a num-
ber of parameters were obtained in the one variable at a
time), four important factors of pH, salt concentration
(NaCl), volume of extractant (CCl4), and disperser
(ethanol) solvents which affect the pre-concentration and
extraction of iron ions were optimized employing the two-
level full factorial by central composite design (CCD)
[45]. All condition tests performed in this section are de-
scribed in the analytical procedure section (80 μg L−1 of
Fe3+, 1 mL of 45 × 10−4 mol L−1 of 3-OH-3-MOPBA,
0.7 mL 5%-NH2OH·HCL as a reducer agent and acetate
buffer (to pH adjusted)). The encoded and non-encoded
values of experimental variables are specified in Table 1.
The data from the 31 experiments (include 16 cube points,
7 center points in cube, and 8 axial points) designed by
MINITAB software version 17.3.1 derived from the ex-
traction of iron ions into DLLME method are shown in
Table 2. [46]. All the experiments performed in accor-
dance with the conditions stated in the analytical proce-
dure section. The mathematical relations between inde-
pendent variables and response are a quadratic polynomial
equation as follows:

Y ¼ 83:48−4:03 Aþ 3:59 B–10:97 C–10 A2–3:07 B2–7:12 C2 ð3Þ

Fig. 3 Pareto chart of factorial
screening experiment (p < 0.05).
A, B, C, and D are pH, extraction
solvent volume (EX), dispersive
solvent volume (DIS), and salt
addition (w/v %), respectively.
Experimental conditions: 1 mL of
45 × 10−4 mol L−1 of 3-OH-3-
MOPBA, CCl4 (extraction
solvent), ethanol (disperser
solvent), 0.7 mL 5%-
NH2OH·HCL as a reducer agent,
NaCl (evaluation of ionic
strength), and acetate buffer (to
pH adjusted)
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where Y is the predicted average extraction recovery that
depends on the three factors of pH, volume of extractant,
and disperser solvents. A, B, and C are pH, extractant
solvent volume (EX), and dispersion solvent volume
(DIS), respectively.

Figure 3 shows the Pareto chart generated in this
experiment. It is clear that DIS, pH, and EX with the
lowest p values respectively are the most significant
factors. Also, the effect of quadratic terms of pH2,
Ex2, and Dis2 is statistically significant on R%, but

none of the two-way interaction is not significant on
R% in 95% confidence level. Figure 4 illustrates the
contour plot and three-dimensional surface response of
extraction recovery modeling for some of the important
factors. These types of curves can well illustrate the in-
teractions between the factors. According to Fig. 4a, in
the pH range of 4 to 5, and the solvent volume of the
extractor of 140 μL, the extraction efficiency is maxi-
mized. Also, as shown in Fig. 4b, in the range of pH 4
to 5 and the solvent volume of the disperser, about
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Fig. 4 2D/3D contour plots and
response surface models of
extraction recovery percent
versus of Ex (extraction solvent
volume) and pH (a) Dis
(dispersive solvent volume) and
pH (b). Experimental conditions:
1 mL of 45 × 10−4 mol L−1 of 3-
OH-3-MOPBA, 0.7 mL 5%-
NH2OH·HCL as a reducer agent,
acetate buffer (to pH adjusted),
NaCl (evaluation of ionic
strength), CCl4 (extraction
solvent), and ethanol (disperser
solvent)
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600 μL has the highest extraction amount. The optimal
predicted points of the experiment conditions have been
shown in the last column of Table 1. In order to evaluate
the validity of the predicted model, three experiments
were carried out in accordance with predicted optimal
conditions, with an average extraction recovery of 87 ±
1.73 that showed good agreement between the results of
the experimental results and the predicted values.

Influence of Extraction Time

Extraction time is one of the major parameters affecting
the extraction efficiency. In DLLME method, it was de-
fined as an interval between the time of injection of the
mixture (disperser + extraction solvent) and the time of
starting of centrifugation. For evaluating this parameter,
different extraction times (0.5 to 90 min at constant
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experimental conditions: 80 μg L−1 of Fe3+, 1 mL of 45 ×
10−4 mol L−1 of 3-OH-3-MOPBA, 0.7 mL 5%-NH2OH·
HCL as a reducer agent, 1 mL of 0.5 mol L−1 acetate
buffer, pH (4.5), 150 μL CCl4, and 600 μL ethanol) were
studied. The results indicated that the extraction time has
no significant effect on the extraction efficiency. This
could be due to the infinitely large surface area between
the extraction solvent and the aqueous phase, susceptible
to extracting the uranyl ions. Therefore, DLLME tech-
nique is very fast, and this is the most important advan-
tage of it, as reported by other researchers. In this method,
centrifuging of sample solution in the extraction proce-
dure takes the most time which is about 3 min.

Influence of Foreign Ions

There is always a great problem with coexisting ions along
with environmental samples to detect metallic ions in very low
amounts using instrumental techniques [47]. In order to inves-
tigate the interference of the concomitant ions, we used 5 mL
of the sample containing iron ions (80 μg L−1) along with
different amounts of other ions (experimental conditions:
1 mL of 45 × 10−4 mol L−1 of 3-OH-3-MOPBA, 0.7 mL
5%-NH2OH·HCL as a reducer agent, 1 mL of 0.5 mol L−1

acetate buffer, pH (4.5), 150 μL CCl4, and 600 μL ethanol).
As the results in Table 3 show, at a tolerable concentration of
concomitant ions, less than 5% deviation in absorbance read-
ing was observed. Therefore, the presence of coexisting ions
in different amounts did not affect our optimized method.

Analytical Method Validation

The analytical performance characteristics of the devel-
oped DLLME method were studied at optimal value of
input variables. At optimized condition, the calibration
graph with excellent linearity (R2 = 0.9986) was observed
for the iron concentration from 15 to 800 ng mL−1. The
mathematical equation of calibration curve was as y =
0.0022x + 0.0585 by the optimized DLLME technique
(experimental conditions 80 μg L−1 of Fe3+, 1 mL of

45 × 10−4 mol L−1 of 3-OH-3-MOPBA, 0.7 mL 5%-
NH2OH·HCL as a reducer agent, 1 mL of 0.5 mol L−1

acetate buffer, pH (4.5), 150 μL CCl4, and 600 μL etha-
nol). The limit of detection was calculated according to
LOD = 3 SB/m in SB and m standard deviation of the
blank and the slope of the calibration graph, respectively.
LOD was observed to be 4 μg L−1. To determine the
relative standard deviation (RSD), iron concentration of
50 μg L−1 was measured ten times at optimal condition.
RSD value was found to be 2.1%. The enrichment factor
was 23 (8 mL of iron aqueous solution resulted in
350 μL).

The developed DLLME method was successfully test-
ed for actual aqueous samples (spiked tap, well, and min-
eral waters). Real water samples were preconcentrated,
and their iron concentrations were measured. The results
of iron determination of real samples are shown in
Table 4.

Comparison of the Proposed Method with Previous Study

The results of this study were compared with other methods
by the same technique used in preconcentration and determi-
nation of iron ions. These results are shown in Table 5. In
contrary to other methods, present method has a lower

Table 4 Analytical results for iron in various real water samples

Sample Fe added
(μg/L)

Fe found, mean ± SDa

(μg/L)
Recovery
(%)

Well waterb – 98.00 ± 0.47 –

40 138.1 ± 0.32 100

80 172.1 ± 0.55 97

100 202.4 ± 0.28 102

Tap waterc – 33.00 ± 00.61 –

40 67.29 ± 0.2 92

80 111.1 ± 0.41 98

100 125.7 ± 0.36 95

Mineral
waterd

– Not detected –

40 41.97 ± 0.83 105

80 83.57 ± 0.27 104

100 97.00 ± 0.35 97

Fruit juicee – 5.000 ± 0.95 –

40 44.10 ± 0.95 98

80 83.01 ± 0.95 98

100 104.6 ± 0.95 100

a Standard deviation (n = 3)
b Collected from Isin Hormozgan Iran
c From drinking water of laboratory
dAquafina mineral water bought from market
e Bought from market

Table 3 Interferences of foreign ions for determination of iron
(80 μg L−1)

Coexisting ions Tolerance ratio (w/w)

EDTA 50

SCN− 100

Al3+ 300

Cu2+, Sn2+, Ag+, Tartarate, Mn2+,
Co2+, Zn2+, Cd2+, Pb2+, Hg2+

500

CH3COO
−, SO2−

4 , NO−
3 , Cr

2+, Co3 + 800

Li+, Na+, K+, Ca2+, Mg2+ 1000
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detection limit (4 μg L−1), lower RSD (2.1%), the broader
dynamic range (15–800 μg L−1), higher enrichment factor
(23), and shorter extraction time (3 min) (experimental condi-
tions 80 μg L−1 of Fe3+, 1 mL of 45 × 10−4 mol L−1 of 3-OH-
3-MOPBA, 0.7 mL 5%-NH2OH·HCL as a reducer agent,
1 mL of 0.5 mol L−1 acetate buffer, pH (4.5), 150 μL CCl4,
and 600 μL ethanol). Also, due to the use of non-toxic che-
lating agent, our method is environment friendly [34].
According to the results, it can be said that our optimized
DLLME method coupled with UV–vis spectrophotometer is
a simpler and more selective method for iron determination in
comparison with previously developed methods.

Conclusions

This paper describes an effective optimized method for
the determination and preconcentration of iron ions in a
variety of water samples. The important parameters
were optimized using both one variable at a time and
response surface modeling methods. In this study, pa-
rameters such as selection of extraction (CCl4) and dis-
perser solvents (ethanol), volume of reducing agent
(0.7 mL 5%-NH2OH·HCL), and chelating agent concen-
tration (1 mL of 45 × 10−4 mol L−1 of 3-OH-3-MOPBA)
by one variable at a time and parameters such as pH
(4.5), extraction (150 μL), and disperser (600 μL) vol-
ume were optimized by response surface modeling
methods. Also, the effect of the added salt concentration
was optimized by both one variable at a time and re-
sponse surface modeling methods, which both methods
confirmed each other.

Because of the special selectivity between the chelating
agent and the iron ions (pH = 4.5), the extraction was per-
formed with the least ion interference. The use of spectropho-
tometric instrumentation is one important merit of simplicity,
cheapness, portability, and so on in comparison with other
previous studies. The present method has lower detection
limits and lower RSDs within less sample volume. Due to
the low levels of organic solvents, as well as the non-toxicity
of our non-toxic chelating agent, this method is considered as
an environmentally friendly method. It is believed that the
proposed procedure can be useful for analysis and monitoring
of iron level in aqueous, environmental, and biological
samples.
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