

Electro Fenton process catalyzed by Fe@Fe₂O₃ nanowire for degradation of carbamazepine from aqueous solutions

Mohammad Mehdi Amin^{a,b}, Saeed Yousefinejad^c, Mansooreh Dehghani^d, Somayeh Rahimi^{b,e,*}

^aEnvironment Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran, email: amin@hlth.mui.ac.ir ^bDepartment of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, North Bahonar Street, 8 Alley, Shiraz, Iran, Tel. +00989178368651; email: rahimi.somaye@gmail.com ^cResearch Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran, email: Yousefisa@sums.ac.ir ^dResearch Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran, email: mdehghany@sums.ac.ir ^eStudent Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

Received 22 September 2018; Accepted 20 April 2019

ABSTRACT

In this study, Fe@Fe₂O₃ nanowires were applied in combination with electro Fenton (EF) process to decompose of carbamazepine (CBZ) drug in an electrochemical reactor using a graphite rod cathode and Ti/PbO, anode. Response surface methodology (RSM) based on central composite design was used to optimize various parameters such as pH, current, $FeSO_4$ ·7H₂O, drug and Fe@Fe₂O₃ concentrations, and reaction time. The results of RSM showed a good statistical relationship between experimental values of CBZ removal and their predicted values using the suggested multi-parameter model. The efficacy of CBZ removal significantly enhanced with increasing density, Fe@Fe₂O₃ nanowire dose, and reaction time, while it was reduced with increasing pH, FeSO₄ 7H₂O concentration, and initial concentration of the drug. The results on a percentage of contribution and the *F*-value (PC% = 42.99 and *F* = 346.4003) showed that $Fe@Fe_2O_3$ dose plays an important role in increasing the efficiency of the electro Fenton process. RSM results also revealed that EF process effectively removed 88.55% of CBZ and 65% of total organic carbon from aqueous solutions under optimum conditions; that is pH = 4, current = 0.18 A (current density = 5.14 mA cm^{-2}), FeSO₄·7H₂O concentration = 3.87 mg L^{-1} , CBZ concentration = 7.49 mg L^{-1} , Fe@Fe₂O₃ dose = $1,050 \text{ mg L}^{-1}$, and reaction time = 50 min. The utilized multi-parameter optimization approach revealed the presence of interactions between pH with $FeSO_4 \cdot 7H_2O$ concentration and pH with reaction time. As a conclusion EF process catalyzed by Fe@Fe₂O₂ nanowire can be used for the removal of pharmaceutical compounds such as CBZ from aqueous solutions.

Keywords: Electro Fenton; Carbamazepine; Fe@Fe₂O₃ nanowire; Ti/PbO₂ Anode; Response surface methodology

* Corresponding author.

1944-3994/1944-3986 © 2019 Desalination Publications. All rights reserved.