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Abstract
Objectives Diabetic neuropathy (DNP) is a widespread and debilitating complication with complex pathophysiology that is
caused by neuronal dysfunction in diabetic patients. Conventional therapeutics for DNP are quite challenging due to their serious
adverse effects. Hence, there is a need to investigate novel effective and safe options. The novelty of the present study was to
provide available therapeutic approaches, emerging molecular mechanisms, signaling pathways and future directions of DNP as
well as polyphenols’ effect, which accordingly, give new insights for paving the way for novel treatments in DNP.
Evidence acquisition A comprehensive review was done in electronic databases including Medline, PubMed, Web of Science,
Scopus, national database (Irandoc and SID), and related articles regarding metabolic pathways on the pathogenesis of DNP as
well as the polyphenols’ effect. The keywords “diabetic neuropathy” and “diabetes mellitus” in the title/abstract and “polyphe-
nol” in the whole text were used. Data were collected from inception until May 2019.
Results DNP complications is mostly related to a poor glycemic control and metabolic imbalances mainly inflammation and
oxidative stress. Several signaling and molecular pathways play key roles in the pathogenesis and progression of DNP. Among
natural entities, polyphenols are suggested as multi-target alternatives affecting most of these pathogenesis mechanisms in DNP.
Conclusion The findings revealed novel pathogenicity signaling pathways of DNP and affirmed the auspicious role of polyphe-
nols to tackle these destructive pathways in order to prevent, manage, and treat various diseases.
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Introduction

As one of the most chronic and common endocrine-metabolic
disorders, diabetes mellitus (DM) is predicted to afflict up to
300 million people or more by the year 2025 [1, 2]. The
elevated blood glucose concentration, in addition to
macrovascular incidents (heart attack, stroke and peripheral
vascular disease) also leads to microvascular complications
in body organs specially kidney (diabetic nephropathy), eyes
(retinopathy), and nerves (neuropathy) [1–3]. Diabetic neu-
ropathy (DNP) has been considered the most common com-
plication of diabetes resulting from prolonged periods of hy-
perglycemia, damaging fragile nerve fibers and the walls of
their blood vessels [4]. The prevalence of DNP in diabetic
patients ranges from 7% within 1 year of diagnosis, to 50%
for those suffering from diabetes for more than 25 years [3].
DNP is divided into several subcategories, including;
hyperglycaemia, generalized (autonomic neuropathy, sensori-
motor polyneuropathy, and acute painful sensory neuropathy),
focal and multifocal (thoracolumbar radiculoneuropathy,
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cranial neuropathy, proximal and focal limb DNP) neuropa-
thies, and superimposed chronic inflammatory demyelinating
polyneuropathy [5]. Diabetic sensory polyneuropathy or pe-
ripheral neuropathy is the most common form of DNP can
present as sensory symptoms include hypesthesia, neuropath-
ic pain, allodynia, paresthesias (tingling or pricking),
dysesthesia and paresis [6]. Neurovascular insufficiency, au-
toimmune damage, neuro-hormonal growth factor deficiency
and hyperglycemia-induced formation of advanced glycation
end products (AGEs) are also among the multiple etiologies of
DNP [7–9].

Despite clinical developments in the treatment of diabetes
complications specially DNP, it still remained a clinical chal-
lenge with no effective solution. Thus, it rises the needs to
develop novel multi-target therapeutics to regulate more in-
volving destructive signaling pathways of individuals with
DNP. As a heterogeneous and large group of phytochemicals
containing phenol rings, polyphenols [10] are multi-target
agents with the most antioxidants and anti-inflammatory ef-
fects have the potentials to combat several diseases like dia-
betes and its complications [11, 12]. Recently, polyphenols
have also been introduced as potential neuroprotective agents
in diabetes [13]. Understanding the signaling pathways under-
lying the progress of DNP and the way polyphenols prevent
the progress of these destructive pathways, may lead to intro-
duce polyphenols as new therapeutic agents in DNP.

The aim of the current review was to address available
therapeutic targets, signaling pathways, molecular mecha-
nisms, and future directions of DNP as well as polyphenols’
effect, in order to pave the way for novel treatments.

Metabolic pathways involved
in the pathogenesis of DNP

Different pathways have been reported as being involved in
the development of DNP pathogenesis e.g., imbalances in
peripheral nerves blood supply, the vascular system of the
thalamic gland, gene expression of sodium and calcium chan-
nels, and autoimmune diseases characterized by activation of
glial cells [14].

In terms of mechanism, polyol pathway, oxidative stress
and advanced glycation, inflammation, trophic factors, chan-
nels, and glutamate pathway are the main mediators and sig-
naling pathways associated with DNP [15–19].

Polyol pathway

Polyol pathway is present in several tissues like peripheral
nerve and blood vessels and certainly contributes to the devel-
opment of DNP [20]. Two main enzymes are involved in the
polyol pathway; aldose reductase (AR, a rate-limiting en-
zyme) and sorbitol dehydrogenase which the first is found in

various tissues, including nerve, lens, retina, glomerulus, and
vascular cells [21]. High blood glucose level leads to the ac-
tivation of AR that produces sorbitol from glucose. This reac-
tion consumes nicotinic acid adenine dinucleotide phosphate
(NADPH) and produces NADP+. High consumption of
NADPH reduces the level of reduced glutathione (GSH) and
increases the level of oxidized glutathione (GSSG).
Nevertheless, due to the inability of sorbitol to cross the cell
membrane, the accumulated sorbitol elevates the blood osmo-
lality resulting in the loss of electrolytes [17, 22]. High osmo-
sis damages the cells surrounding peripheral neurons
(Schwann cells) and causes the schwannopathy-related phe-
notype of DNP [22, 23].

The other key enzyme sorbitol dehydrogenase converts the
accumulated sorbitol to fructose via oxidation and producing
nicotinic acid adenine dinucleotide (NADH). However, the
increase in both sorbitol and fructose leads to some deleterious
effects on nerve cells due to several reasons, including the
decrease in concentration of osmolality regulator (taurine or
2-aminoethanesulfonic acid, a bile component), and insulin
sensitivity regulator (myoinositol), inhibition of Na+/K+

ATPase pump, accumulation of intracellular Na+, ionic
homoeostasis via diminution of Protein kinase C (PKC) activ-
ity which cause swelling of axon and axon-glia dysfunction,
and reduction of nerve conduction velocity (NCV) [15].

The accumulated glucose enters the hexosamine pathway
and produces fructose-6-phosphate which, in turn, is convert-
ed to uridine diphosphate-N-acetylglucosamine (UDP-
GlcNac). GlcNac is one of the sugar moieties used in N- or
O-glycosylation of such translated proteins (posttranslational
modification) as the SP-1 transcription factor which leads to
overexpression of plasminogen activator inhibitor-1 (PAI-1)
and transformation of growth factor-β1 (TGF-β1). As a re-
sult, these factors cause the injury of nerves by producing
mitochondrial superoxides [24]. Given that, AR inhibitors
were highly effective in attenuating DNP in animal models
[25]. In contrast, they were not as effective in human clinical
studies [26], which was partly due to the administration of
much lower doses than in animal in-vivo studies. Therefore,
not adequate concentrations were reached to prevent the flux
via the polyol pathway [25].

Oxidative stress and advanced glycation

The term oxidative stress is used in order to describe the state in
which oxidation exceeds the antioxidant capacity in cells due to
an imbalance of the enzymatic antioxidant catalase (CAT) and
superoxide dismutase (SOD) or non-enzymatic factor glutathi-
one (GSH). As mentioned above, the consumption of NADPH
in the polyol pathway has a negative effect on the level of a
reduced antioxidant key player, GSH. High level of reactive
oxygen species (superoxide O2

-·, the hydroxyl radical OH·,
and hydrogen peroxide H2O2) damages the cells’ lipid and
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proteins. It has been reported that ROS leads to damage of lipids
in the myelin sheath [27]. Edwards et al. showed that high level
of nitrosative products (peroxynitrite ONOO−and nitrotyrosine
NT) in diabetic patients are positively correlated with diabetic
peripheral neuropathic pain [28]. Consequently, they would in-
crease the lipid peroxidation, DNA and protein damage rate.
Advanced glycation end products (AGEs) are made by non-
enzymatic reactions between the damaged DNA, lipids or pro-
teins and aldehyde groups of reducing sugars, which induce
ROS production both during their interaction and formation
with AGE receptor (RAGE) [7, 29]. Moreover, advanced
lipoxidation end products (ALEs) are formed by increased ox-
idative stress-induced lipid per-oxidation coupled with altered
lipidmetabolism [30]. NADPH-oxidase, Na+/H+ exchanger, 12/
15-lipoxygenase, and PKC-β are also among the enzymes in-
volved in ROS production in DNP patients [31–33]. PKC-β
plays a central role in nerve function and pathogenesis of
DNP [34]. Streptozotocin (STZ)-induced diabetic rats showed
the positive effects of PKC-β inhibitor on DNP in reducing free
radicals [35].

Mitochondria is the also house for electron transport chain
and normally produces a low level of free radicals which are
neutralized by antioxidants. In hyperglycemia, the potential of
the mitochondrial membrane is disrupted and it releases cyto-
chrome c which activates procaspase 9 together with apoptotic
protease activating factor-1 (Apaf-1) cause the activation of
apoptotic executioner caspase 3 in neurons [36, 37]. In a study
by Zherebitskaya et al. on STZ-induced diabetes rat model,
high glucose decreased manganese-containing superoxide
dismutase (MnSOD) and increased ROS level in axons which
mainly caused the impairment in the axons outgrowth and
dystrophic structures [38]. The aforementioned data on oxida-
tive stress indicates that controlling ROS level in diabetic pa-
tients could be a plausible approach to prevent DNP.

Inflammation

Inflammation is a cellular process activated by an injury in the
nerve, skin, spinal cord or dorsal root ganglion (DRG) leading
to painful sensation. It is correlated with diabetes and high
levels of inflammatory cytokines like C-reactive protein
(CRP) and tumor necrosis factor α (TNF-α) in neuropathic
patients [39]. Conti et al. found that the induction of diabetes
with STZ led to the infiltration of immune cells (macrophages
and monocytes), the neuronal overexpression of pro-
inflammatory cytokines interleukin-1 beta (IL-1β) and ex-
pression of neurotrophin receptor p75 (p75 NTR) [40]. The
involvement of inflammation in DNP was also confirmed in
an animal model with STZ-induced diabetes. It was found that
thiazolidinedione pioglitazone altered the expression level of
protein kinase C-alpha, decreased phosphorylated extracellu-
lar signal-regulated kinases (ERK), and decreased the number
of accumulated macrophages in Schwann cells [41].

As a transcriptional factor composed of two subunits of
p65 and p50, nuclear factor kappa B (NF-κB) is localized in
the cytoplasm in an inhibitory state bound to its inhibitor iκB.
Upon simulation, iκB is tagged by ubiquitin for proteasomal
degradation leaving NF-κB in an active state. The activated
NF-κB is translocated to the nucleus where it promotes the
expression of different inflammatory and survival genes.
Andorfer et al. showed that the p65 subunit of NF-κB is up-
regulated in the myelin sheath of neurons in demyelinating
polyneuropathies [42]. Ha et al showed that hyperglycemia
in glial cells activated NF-κB leading to an increase in the
level of inflammatory genes (p38MAPK, TNF-α, IL-1β, IL-
6, COX-2, iNOS) and cell adhesion genes (Endothelin-1,
ICAM-1, and VCAM-1) [43]. Bierhaus et al., localized
NF-κBp65 subunit, advanced glycation end-product receptor
and IL-6 in sural nerve biopsies collected from diabetic pa-
tients [16, 44]. All these findings prove that inflammatory
signaling cascades play important roles in the pathogenesis
of DNP and makes them interesting pharmacological targets
by natural entities.

Trophic factors

Neurotrophic factors promote the normal physiological func-
tions of surviving neurons, increase their resistance to injury,
and stimulate nerve regeneration as well, which all improve
the clinical condition of DNP patients [45]. Neurotrophin de-
ficiency contributes to the pathogenesis of DNP. Brain-
derived neurotrophic factor (BDNF), neurotrophin-3/4/5
(NT-3/4/5), ciliary neurotrophic factor (CNTF) and maybe
insulin-like growth factors (IGFs) were all reduced in the mus-
cle of DNP patients [46]. Nerve growth factor (NGF) could
attenuate these neurotrophic imbalances [47]. In fact, preclin-
ical studies support the notion that affecting neurotrophic fac-
tors by natural products might be effective treatments for
many different types of peripheral nerve disease.

Peroxisome proliferator-activated receptors

Peroxisome proliferator-activated receptors (PPAR) belong to
nuclear hormone receptor proteins. Bound to the lipophilic
stimulant, PPAR, induces the expression of proximal genes
involved in β-oxidation of fatty acids, proximal proliferation,
lipid hemostasis and hepatocarcinogenesis [48, 49]. α, β/δ,
and γ are the main three subtypes of PPARs which play a
critical role in controlling the metabolism, storage, and mobi-
lization of lipids, glucose, morphogenesis and inflammatory
processes [50][49, 51]. PPARs cooperate with other cellular
transcription factors such as NF-κB, signal transducer/
activator of transcription-1 (STAT-1) and activated protein-1
(AP-1) [51]. PPARs repress the expressions of pro-
inflammatory genes (IL-1β and TNFα), and chemokines
(MCP-1 and CCR2) and reduce the pain sensation [52]. As
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insulin-sensitizing drugs, PPAR gamma (PPARγ) agonists
(e.g. pioglitazone and rosiglitazone), are widely recommend-
ed for the treatment of insulin resistance-hyperglycemia [53]
and to attenuate spinal nociceptive neuron activation in type II
diabetic rats [54]. The recent clinical application of PPARs
agonist provides a promising future to evaluate their potential
as novel analgesics in the treatment of different chronic pain
conditions such as DNP. However, it is important to note their
potential adverse effects while targeting the PPAR signaling
system as analgesics [55]. These results make necessary the
research for natural PPAR agonists in order to reduce the DNP.

Channels activation

The transient receptor potential vanilloid 1 (TRPV1) channel
is involved in various modalities of nociceptive stimuli. In a
STZ-induced painful DNP, TRPV1 expression was signifi-
cantly increased in hyperalgesic compared to hypoalgesic
and normoalgesic skin [56, 57]. Studies showed that early
stages of DNP are due to up-regulation of TRPV1 by PKC
and PKA [58]. It indicated the key role of TRPV1 channels in
the expression of hyperalgesia [58]. Other TRPV receptors
have not been yet investigated enough in DNP [59]. In gener-
al, TRPV might be considered as a promising therapeutic
target to develop new treatments for DNP. Activation of
TRPV1 evoked [Ca2+] transients and also reciprocally alters
in hyperalgesia [58]. Thus, calcium channels (Cav) are
thought to be involved in painful DNP [60]. The alpha(2)delta
subunits increase the expression and trafficking of these chan-
nels, but may also play a role in synaptogenesis within the
central and peripheral nervous system [61]. In addition to
Cav, voltage-gated sodium channels (Nav) have also been
shown to increase at the site of neuronal damage in DNP
[62]. Methylglyoxal, as an AGE, increased in the serum of
painful DNP patients, and causes the thermal and mechanical
hyperalgesia when injected into diabetic mice (not in sodium
channel Nav1.8 knockout mice) [63]. These all show the im-
portance of TRPV1, Nav and Cav channels by multi-target
natural products on the development of DNP. Besides,
targeting TRPV1 is co-expressed with glutamate receptors
[64].

Glutamate pathway

Glutamate plays a crucial role such processes as the synapse
plasticity, cell differentiation, cell migration, death [65] and
peripheral transduction of sensory inputs in the central ner-
vous system (CNS) [66]. Several studies have shown the in-
volvement of glutamate-mediated toxicity in both acute and
chronic neurodegenerative diseases of CNS and PNS [67].
Glutamatergic ligands cause nociceptive behaviors, which
suggests that glutamate is involved in nociceptive pathways
and peripheral sensory transduction. On the other hand,

hyperglycemia significantly increased the expression of N-
methyl-D-aspartate (NMDA) receptors in a mice model of
type I diabetes [68]. The role of spinal NMDARs has also
been demonstrated in nerve injury-induced pain [69]. Spinal
NMDAR subunit 2B (NR2B) was upregulated in both protein
and mRNA levels of STZ-induced DNP resulting in the hy-
peractivity of spinal cord dorsal horn neurons [70]. Glutamate,
especially NR2B, trigger cascades of oxidative stress, inflam-
mation, and apoptosis [71] which are among the important
pathways involved in DNP. For the same reason, targeting
the glutamate pathway and NR2B as upstream factors of ox-
idative, inflammatory and apoptotic pathways by natural enti-
ties is very promising to combat DNP.

Conventional pharmacotherapy of painful
DNP

There are different drugs proposed for treating or controlling
DNP complications. Conventional treatments for neuropathic
pain include tricyclic antidepressants (TCA, e.g., nortriptyline
or amitriptyline), serotonin-norepinephrine reuptake inhibitor
(SNRI, e.g., duloxetine), anticonvulsants therapies (e.g.,
gabapentin, pregabalin), and the dual-effect drug tapentadol
(an opioid receptor agonist and norepinephrine reuptake in-
hibitor) which are used to treat neuropathy induced disorders
[72]. Other medications like opioids (e.g., Tramadol) are also
prescribed but not recommended [19]. A recent systematic
review and network meta-analysis of the randomized con-
trolled trial confirmed the effectiveness of SNRIs, TCAs, an-
ticonvulsants and topical capsaicin in painful DNP. Moreover,
SNRIs had a greater effect on attenuating the pain than the
opioids and anticonvulsants [73].

Nevertheless, there is no definitive treatment for DNP with
most potency and less side effects. Thus controlling the blood
sugar can significantly alter the course of neuropathy. Of an-
other point of view, many of these agents have a number of
serious adverse effects. This necessitates the search for effec-
tive and safe medications among which herbal medicine is a
potential regimen for diabetes and diabetes-related complica-
tions such as neuropathy [74, 75].

Polyphenols as alternative therapies for DNP

The ethnobotanical data indicates that there are about 800
plants that may possess anti-diabetic properties. Several herbal
treatments including curcumin, kaempferol, quercetin,
naringenin, resveratrol, kolaviron, etc have been so far admin-
istered for DNP patients. But, first it is necessary to identify
DNP syndromes some of which are potentially treatable by
traditional herbal medicine.
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Therefore, the current review has attempted to provide a
helpful classification of herbal medicine used in the manage-
ment of DNP. Most relevant pharmacological targets and cel-
lular signaling involved in the therapeutic effect of polyphe-
nols in diabetic DNP are as follows:

Enzymatic and non-enzymatic antioxidant
performance

Hyperglycemia reduces the activity of antioxidant enzymes in
diabetic animals with non-enzymatic glycosylation and causes
oxidative stress [76]. Due to the induction of some damaging
effects like free radical generation via ischemia, hyperglycemia,
increased mitochondrial leak, catecholamine and leukocytes ox-
idation, decrease of glutathione peroxidase (GPx), glutathione-
S-transferase (GST), Cu/Zn SOD and lower levels of GSH,
oxidative stress plays a major destructive role in the develop-
ment of DNP [76–79]. Several antioxidants specially polyphe-
nols have shown some activities promising for the treatment of
experimental DNP. Treatment with α-lipoic acid prevents
neurovascular abnormalities in experimental DNP. It also atten-
uates reduced digital NCV, nerve blood flow and GSH levels in
diabetic rats by enhancing oxygen free radical scavenging ac-
tivity [80, 81]. On the other hand, probucol, as an LDL-
oxidation inhibitor, and a powerful free radical scavenger, nor-
malizes both nerve blood flow and electrophysiology [82].

Al-Rejaie et al. reported that naringenin possesses antiox-
idant activity. It also suppressed the levels of thiobarbituric
acid reactive substances (TBARS) and nitric oxide (NO),
and attenuated the reduced level of CAT, and GPx in STZ-
induced diabetic rats [83, 84]. As another polyphenol, resver-
atrol protected neural tissues against diabetes-induced oxida-
tive stress either by reducing NO, XO, MDA levels of the
cerebellum, hippocampus, cortex, spinal cord and brain stem
by enhancing GSH level in diabetic rats [85]. Curcumin and
apocynin also attenuated the increased level of spinal H2O2

and MDA level and enhanced SOD level in STZ-induced
diabetic rats, as indicated by Zhao et al. It has also been dem-
onstrated that curcumin inhibited the activation of spinal
NADPH oxidases, the main enzymes that produce ROS by
reversing the upregulation of both phagocyte NADPH oxidase
subunits (p47phox and gp91phox) [86].

More relevant pharmacological targets and cellular signal-
ing involved in antioxidant effect of polyphenols in DNP are
shown in Table 1.

Prevention of pro-inflammatory cytokines
and inflammatory reaction

Pro-inflammatory changes observed in diabetes play a major
role in the pathogenesis of atherosclerosis, neuropathy, ne-
phropa thy, and re t inopa thy [87] . Genera t ion of
hyperglycemia-induced ROS is directly involved in the

pathogenesis of DNP. These radical oxygen species may cause
the production of TNF-α and IL-1β. Hyperglycemia and in-
sulin resistance are associated with TNF-α system in the CNS
which may induce pain and hyperalgesia in DNP [88–90].
Moreover, studies showed that inhibiting TNF-α reduced
hyperalgesia in models of painful DNP [91]. Meanwhile, it
has been demonstrated that intraplantar injection of TNF-α is
associated with mechanical allodynia and thermal
hyperalgesia in rats [17, 88, 92]. IL-1β is derived from many
cell types, like fibroblasts, synoviocytes, mononuclear cells,
schwann and endothelial cells, and plays a central role in the
generation ofmechanical hyperalgesia. It also neutralized IL-1
receptors, which in return, reduced the pain-associated behav-
ior in mice model of experimental neuropathy [93–95].

Hyperglycemia and higher lipid level lead to NF-κB acti-
vation that plays a central role in TNF-α and ROS production
inducing inflammatory demyelination. It has been reported
that NF-κB may elevate in metabolic diseases like diabetes
and initiates inflammation [96]. P65 and IκB-α are among the
subunits of NF-κB which are overexpressed in sural nerve
macrophages in acute and chronic inflammatory demyelinat-
ing polyneuropathies [42, 97].

Kumar and Sharma demonstrated that resveratrol pos-
sessed anti-inflammatory activity by decreasing the expres-
sion of p65 and IκB-α and ameliorating the elevated levels
of TNF-α, COX-2, IL-6, and NF-κB in STZ-induced DNP in
rats [98]. In addition, resveratrol significantly decreased the
serum glucose level, atherogenic index, and the expression of
cerebral MDA and COX-2 [99].

As revealed by Deng et al., carvacrol (25, 50, and 100mg/kg)
diminished STZ-inducedDNP via decreasing the level of NF-κB
p65 subunit, IL-1β, caspase-3, and TNF-α [100]. As another
polyphenol, kaempferol attenuated STZ-induced DNP by de-
creasing the levels of IL-1β and TNF-α and suppressing the
formalin-induced nociceptive behavior. It also ameliorated LPS-
induced inflammatory mediators (NO, prostaglandins, TNF-α,
IL-1β, ROS and phagocytosis) in the microglial cells [101,
102]. More relevant pharmacological targets and cellular signal-
ing involved in the anti-inflammatory effects of polyphenols in
DNP have been shown in Table 1.

Anti-nociceptive effects

Hyperglycemia-triggered lipid peroxidation and ROS genera-
tion in sciatic nerves, accelerated the dysfunction of sciatic
nerves and reduced endoneurial blood flow in diabetes-
induced neuropathy. Painful DNP can occur as spontaneously,
hyperalgesia or allodynia. Neuropathic pain is one of the most
common diabetic complications induced by abnormal func-
tion of the peripheral or central nervous system and results in
sensory abnormalities, changes of primary afferent nerves,
and central sensitization. Studies have demonstrated the effec-
tiveness of γ-aminobutyric acid (GABA) and opioids, TCAs,
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gabapentin, pregabalin, phenytoin, lamotrigine, dextrome-
thorphan, and tramadol on painful sensory neuropathy.
Although these therapies would relieve the pain 30–50%, they
are often restricted due to significant side effects [87]. So, it
raises the needs to polyphenols as alternative therapies.

As concluded by Kandhare et al., quercetin inhibited a
significant increase of paw withdrawal threshold (PWT) in
STZ-induced diabetic rats in a plantar heat hyperalgesia test
that was evaluated by Hargreaves’ test. In addition, it signifi-
cantly increased the mechanical PWT, compared to STZ-
diabetic control rats on a Randall-Selitto paw pressure device
[103]. It has also been shown that quercetin (100 mg/kg, p.o)
increased the tail withdrawal latency in both diabetic and non-
diabetic mice [104]. Besides, it has significantly increased the
tail and paw withdrawal latency and decreased the number of
foot slips of STZ-induced diabetic rats in a dose-dependent
manner, compared to normal control [75, 105, 106].

Studying the anti-nociceptive effect of other polyphenols,
Kaur et al., showed that chromane significantly corrected the
decreased PWT of STZ-induced diabetic rats in tail-
immersion and hot-plate tests, compared to the control group
[107]. Chlorogenic acid and 6-methoxy flavanones also in-
creased the thermal and mechanical PWT in diabetic rats,
respectively [108, 109].

As Attia et al. articulated, the combined administration of
curcumin and gabapentin caused a significant increase in the
mechanical PWTas well as hot-plate and tail-flick latencies in
STZ-induced diabetic rats [110]. Curcumin showed signifi-
cant pain threshold elevations, increased reaction times and
tail-flick response latencies [111]. Treatment with curcumin
also enhanced the anti-nociceptive activity in hot-plate and
allodynia- tests in STZ-induced DNP via increasing pain
threshold level compared to untreated diabetic rats [112].
Oryzanol and diosmin both significantly increased the tail-
flick latency in tail-immersion test and reduced the thermal
hyperalgesia in STZ-induced diabetes [113]. In addition,
diosmin treatment significantly improved shortening of time
on walking function test in diabetic rats [114].

Kumar et al., demonstrated that the decrease of PWT
and tail flick latency in cold and hot immersion perfor-
mance was significantly corrected by resveratrol treat-
ment at 10 and 20 mg/kg [98]. As two other polyphenols,
silymarin and 7-hydroxy-3,4-dihydrocadalin caused a
significant decrease in pain scores of the formalin-test
[115, 116].

More relevant pharmacological targets and cellular signal-
ing involved in anti-nociceptive effects of polyphenols in
DNP are shown in Table 1.

Improvement of nerve growth factors

There are complex mechanisms behind the DNP involv-
ing several molecule alterations and sensory modalities.T
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Several neurotrophic factors have been found to effects
the population of specific neurons in the nervous system,
among the most promising ones is NGF [45]. Evidence
suggests that DNP could be modulated by neurotrophins
like transient receptor potential ion channels, including
vanilloid receptor 1 (VR-1) in one hand and nerve growth
factor (NGF), such as its receptors p75 and tyrosine ki-
nase A (TrkA) as well as their down streams on the other
hand. It has been well-documented that NGF has an im-
portant neuroprotective function and causes axonal
growth. Pathological conditions that alter the levels of
NGF can cause neurons to lose their function and die.
After inflammation and nerve injury, NGF increases in
the nervous system and facilitates hyperalgesia and pain
that can be reduced by anti-NGF therapy. The complex of
TrkA and NGF sensitizes VR1 thereby elevates pain.
Following the binding of NGF to TrkA as related recep-
tor, nerve regeneration, cell survival, and neurite-growth
pathways will begin [117].

As a structurally similar hormone to insulin, IGF-1
plays an auspicious anabolic role in cellular proliferation
and growth. It has also been considered as a strong inhib-
itor of apoptosis. It also controls the growth and develop-
ment of nerve cells and DNA synthesis, as well [118]. It
has been demonstrated that sciatic nerve levels of NGF and
IGF-1 in morin treated diabetic animals significantly ele-
vated in comparison with the negative control group [118].

As indicated by Song-Tao et al., mulberry flavonoids
and methycobal alleviated the suppression of the average
optical density of myelin sheath and myelinated
extramedullary fiber cross-sectional area in diabetic rats.
Furthermore, animals pretreated with 0.3 g/kg mulberry
flavonoids showed ultrastructural features of myelin, re-
markable axonal improvement and considerable decre-
ment of myelin breakdown [119]. Astragaloside IV, as
another polyphenol, suppressed a decrease in myelinated
fiber area and density and segmental demyelination in
diabetic rats by decreasing the hemoglobin A1c
(HbA1C) and AR levels in erythrocytes, increasing the
plasma insulin levels, and GPx activity in nerves.
Moreover, astragaloside IV elevated Na+/K+-ATPase ac-
tivity in both nerves and erythrocytes in STZ-induced
diabetic rats [120].

Ding et al., showed that grape seed proanthocyanidins
treatment (500 mg/kg dose) improved the abnormal func-
tion of peripheral nerve and impaired nerve tissues. They
also showed that it reduced the NCV level and concentra-
tion of free Ca2+, elevating Ca2+-ATPase activity in sciat-
ic nerves [121]. Diabetic rats treated with curcumin atten-
uated the reduction of sciatic nerve Na+/K+ ATPase activ-
ity compared to normal control. In addition, curcumin
treatment of diabetic rats has shown a gradual recovery
of cyclooxygenase activity in sciatic nerve [122].

Glutamate pathway and NMDA receptors

As previously mentioned, glutamate receptors and ligands are
thought to be involved in nociceptive behaviors in experimen-
tal models of DNP. It seems that glutamate and the NMDA
receptor are involved in nociceptive pathways and peripheral
sensory transduction [123]. NMDA receptors are coupled to
mitogen-activated protein kinase (MAPK) and ERK phos-
phorylation and activation in the superficial laminae of the
spinal cord which can be suppressed by NMDA receptor an-
tagonist treatment [124–126]. In painful DNP, NMDA recep-
tor ion channel-mediated calcium entry play a key role for the
activation of MAPK and ERK pathways [123].

Resveratrol prevents glutamate damages by blocking
the NMDA receptor and suppressing glutamatergic neu-
rotransmission [127, 128]. To prevent diabetic retinopa-
thy, it significantly decreased glutamine synthetase, trans-
portation, and expression, [129]. Resveratrol inhibits mi-
croglia activation, mitochondrial dysfunction, intracellu-
lar ROS production and impairments in Na+/K+-ATPase
[130, 131]. It also down-regulates a glutamate-induced
tissue plasminogen activator via ERK and AMPK/
mammalian target of rapamycin (m-TOR) pathways and
decreases MAPK activation, which subsequently sup-
presses the voltage-dependent Ca2+ channel activity and
inhibits evoked glutamate release [132, 133]. Similar to
resveratrol, piceatannol induces the expression of nuclear
factor erythroid 2–related factor 2 (Nrf2)-dependent and
heme oxygenase-1 (HO-1) and thereby, protects HT22
neuronal cells against glutamate-induced cell death [134].

As another polyphenol, chlorogenic acid in coffee
protects neurons from glutamate neurotoxicity through
its caffeoyl acid group, and its hydrolysate, the caffeic
acid by regulating Ca2+ entry into neurons [135, 136].

Protection of motor neuron by epigallocatechin-3-
gallate is associated with regulating glutamate level
[137]. It inhibits glutamate dehydrogenase in pancreatic
ß-cells and activates AMPK to positively affect diabetes
[138]. It also reduces the glutamate-induced Ca2+ in-
crease by attenuating PKC and ionotropic Ca2+ influx
[139, 140], as quercetin does [141].

Curcumin attenuated NMDA receptor-mediated
excitotoxicity in diabetic rats [142], ameliorated both gluta-
mate level and gene expression of NR2B [143, 144], and
prevented intracellular Ca2+ elevation [145]. In addition, it
affected PI3K/AKT pathway and downstream signaling
through TrKβ and BDNF, possibly by decreasing MAPK/
ERK activation [146, 147].

Since, Apigenin 8-C-glucoside, chlorogenic acid, and
naringin regulate glutamate pathway [148, 149] and
astragaloside IV and kaempferol attenuate glutamate-induced
toxicity and oxidative stress [150, 151], they could be good
options for preventing DNP complications (Table 1).
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More relevant pharmacological targets and cellular signal-
ing involved in the therapeutic effect of polyphenols in DNP
have been shown in Table 1, Figs 1 and 2.

Therapeutic applications and health benefits
of polyphenols: Diabetes, DNP and beyond

Polyphenols benefit human health status and play promising
roles in the management, prevention and treatment of several
chronic diseases, including cardiovascular disease, cancer, obe-
sity, pancreatitis, gastrointestinal problems, osteoporosis, lung
damage, neurodegenerative diseases, and gut microbiota based
on their antioxidant and anti-inflammatory effects [152–157].
Polyphenols have an auspicious role against several
inflammation-mediated diseases through inhibiting inflamma-
tory mediators and signaling pathways [158], as we described
previously. Polyphenols also induce cell apoptosis and arrest
cellular growth in order to be tumor suppressors [159].

Several studies reported that resveratrol prevents platelet
aggregation and decreased blood pressure and low-density
lipoprotein (LDL) cholesterol as well [11, 160–163]. Of the
compounds contain the polyphenol curcumin, it was hypoth-
esized to contribute to the low incidence of cognitive impair-
ment and Alzheimer’s disease in individuals with a high rate
of consumption [164]. Randomized-controlled trial studies
reported that polyphenolic compounds reduce the differentia-
tion, proliferation and genesis of adipocytes [165]. Catechin
polyphenols, have been linked to antioxidant, anti-inflamma-
tory, and anti-mutagenic properties and thought to prevent
weight gain by promoting greater fat oxidation and energy
expenditure [166–169]. Resveratrol has also shown anti-
obesogenic properties in both animal and human studies
[170]. Curcumin has been shown to reduce adiposity through
suppressed angiogenesis, reducing inflammation, and increas-
ing energy metabolism [171]. Of the gastrointestinal benefits,
polyphenol may inhibit invasive species while promoting ben-
eficial gut bacteria, may promote beneficial actions of
probiotics with unknown mechanisms [172–174]. Evidence

Polyphenols 

Nociception
↑PWT

↓Mechanical, hermal
and cold allodynia, 

↑MNCV 

Oxidative stress
↓MDA, H2O2, LPO,

NO, and NO2
-

↑GPx, SOD, GSH, CAT 

Hyperglycemia
↓HbA1C

↓ Aldose reductase 

↓AGEs 

Vascularity  
↑ Na+/K+ ATPase 
↑Nerve blood flow 

↓free Ca2+

Myelination
↑Myelinated fiber 

area density

↓ Segmental 
demyelination

Glutamate pathway
↓Glu, NR2B

Inflammation
↓IL-1β, TNF-α, COX-2,

NF-kB

Improvement of
NGF and IGF-1

Fig. 1 General effects of polyphenols on DNP. PWT: Paw withdrawal
threshold, NGF:Nerve growth factor, IGF-1: Insulin-like growth factor-1,
MDA: Malondialdehyde, H2O2: Hydrogen peroxide, LPO: Lipid perox-
idation, NO: Nitric oxide, XO: Xanthine oxidase, GPx: Glutathione per-
oxidase, SOD: Superoxide dismutase, GSH: Glutathione, CAT: Catalase,

IL: Inter leukin, TNF-α : Tumor necrosis factor-α , COX:
Cyclooxygenase, HbA1C: Hemoglobin A1C, Glu:Glutamate, NMDA:
n-methyl-D-aspartate, NR2B: NMDA type 2B, MNCV: Motor nerve
conduction velocity, AGEs: Advanced glycation end products
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suggests modulatory potential impacts of polyphenols on
chronic disease risk, such as the hepatoprotective and
atheroprotective effects and improving insulin sensitivity
[175–177].

Although, there are yet limited human studies to tackle
diabetic chronic complications by polyphenols, purified
polyphenols, as well as diets rich in polyphenols, also pre-
vent the progress of human chronic complications in diabe-
tes like DNP [178, 179]. As inflammation, oxidative stress,
trophic factors, channels, and glutamate pathway are the
main signaling mediators and pathways associated with
DNP, so polyphenols with anti-inflammatory and antioxi-
dant effects could carry out their significant health benefits
through tackling them in diabetes. In the clinical trial test-
ing, curcumin attenuated inflammatory mediators like
TGF-β and IL-8 [180] as well as oxidative stress markers
including lipid peroxidation and MDA [181], thereby could

be a promising polyphenol to combat DNP. In type II dia-
betic patients, resveratrol [182], berberine [183, 184] and
catechin [185] resulted in a decrease in insulin resistant and
an increase in insulin level. A meta-analysis of clinical
studies in diabetic patients showed that cinnamon or cinna-
mon extracts decrease fasting blood glucose levels [186].
As high blood glucose level leads to the activation of AR
enzyme of the polyol pathway in DNP [21], so resveratrol,
catechin and cinnamon could be effective compounds to
combat DNP. As another polyphenol, ginger in addition to
blood glucose lowering effects it also decreased inflamma-
tion and oxidative stress in patients with type II diabetes
[187, 188]. Growing evidence have revealed positive ef-
fects of various dietary polyphenols on blood glucose and
polyol pathway, oxidative stress, and inflammatory media-
tors may also help prevent and control diabetes complica-
tion as DNP, however, more clinical trials are needed [189].

Fig. 2. Polyphenols mechanisms of action in DNP. DNP: Diabetic
neuropathy, AR: Aldose reductase, RTK: Receptor tyrosine kinase, NGF:
Nerve growth factor, IGF-1: Insulin-like growth factor-1, MDA:
Malondialdehyde, H2O2: Hydrogen peroxide, LPO: Lipid peroxidation,
NO: Nitric oxide, XO: Xanthine oxidase, GPx: Glutathione peroxidase,
SOD: Superoxide dismutase, GSH: Glutathione, CAT: Catalase, IL:

Interleukin, TNF-α: Tumor necrosis factor-α, COX: Cyclooxygenase,
NMDAR: n-methyl-D-aspartate receptor, MAPK: mitogen-activated protein
kinase, ERK: extracellular signal-regulated kinases, m-TOR: Mammalian

target of rapamycin, Activation , Modulation: Inhibition
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Conclusion and future perspective

As the most distressing complication of diabetes, DNP affects
more than 30% of diabetic people worldwide. There are in-
creasing types of diabetes-induced peripheral nerve injury,
including autonomic and small fiber predominant neuropathy,
diabetic amyotrophy, radiculopathy, mononeuropathy and
mononeuritis multiplex. The pathogenesis of DNP is multi-
factorial with the main categories being metabolic and ische-
mic. Although opioid therapy and neuromodulating medica-
tions, including TCA and anticonvulsants have been found to
be effective in the treatment of neuropathic pain, the high costs
associated with social and personal healthcare of DNP in one
hand, and lack of consistently effective and safe treatment for
DNP on the other hand rise the needs to develop novel herbal
therapies to improve the life quality of individuals with DNP
[201]. Among natural entities, several evidence indicated that
polyphenols possess protective effects via antioxidant and
anti-inflammatory pathways. Polyphenols are multi-target
agents [10] with different structures, signaling pathways and
physiological roles possessing the rich antioxidants and anti-
inflammatory effects. They have the potentials to combat sev-
eral chronic diseases like diabetes and its complications with
less toxicity in-vitro and in animal models, so play a vital role
in human health [11, 12]. These features have made polyphe-
nols an emerging area of interest in nutrition [202, 203]. The
current review, introduced polyphenols as strong multi-target
compounds to tackle DNP through affecting different signal-
ing pathways with fewer side effects. The findings affirm that
herbal treatments such as curcumin, kaempferol, quercetin,
naringenin, resveratrol, kolaviron, and etc may positively ef-
fect in the management of DNP.

Further area of research on novel pathogenicity signaling
pathways of DNP as well as the safety and efficacy of poly-
phenols in human, will expand the more potential applications
of polyphenols in the management, prevention, and treatment
of several diseases. However, more studies are still needed to
introduce more effective treatments for DNP.
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