(2019) Evaluation of Mechanical Properties and Cell Viability of Poly (3-Hydroxybutyrate)-Chitosan/Al2O3 Nanocomposite Scaffold for Cartilage Tissue Engineering. J Med Signals Sens. pp. 111-116. ISSN 2228-7477 (Print) 2228-7477 (Linking)
|
Text
11810.pdf Download (1MB) | Preview |
Abstract
Background: The aim of this study was to evaluate the effects of alumina nanowires as reinforcement phases in polyhydroxybutyrate-chitosan (PHB-CTS) scaffolds to apply in cartilage tissue engineering. Methods: A certain proportion of polymers and alumina was chosen. After optimization of electrospun parameters, PHB, PHB-CTS, and PHB-CTS/3 Al2O3 nanocomposite scaffolds were randomly electrospun. Scanning electron microscopy, Fourier transform infrared spectroscopy, water contact angle measurement, tensile strength, and chondrocyte cell culture studies were used to evaluate the physical, mechanical, and biological properties of the scaffolds. Results: The average fiber diameter of scaffolds was 300-550 nm and the porosity percentages for the first layer of all types of scaffolds were more than 81. Scaffolds' hydrophilicity was increased by adding alumina and CTS. The tensile strength of scaffolds decreased by adding CTS and increased up to more than 10 folds after adding alumina. Chondrocyte viability and proliferation on scaffolds were better after adding CTS and alumina to PHB. Conclusion: With regard to the results, electrospun PHB-CTS/3 Al2O3 scaffold has the appropriate potential to apply in cartilage tissue engineering.
Item Type: | Article |
---|---|
Keywords: | Alumina nanowires cartilage tissue engineering chitosan electrospinning polyhydroxybutyrate |
Subjects: | QS Human Anatomy > QS504-532 Histology |
Divisions: | Faculty of Medicine > Department of Basic Science > Department of Anatomical Sciences Faculty of Medicine > Department of Basic Science > Department of Molecular Medicine and Genetics School of Advanced Technologies in Medicine > Department of Biomaterials, Nanotechnology and Tissue Engineering |
Page Range: | pp. 111-116 |
Journal or Publication Title: | J Med Signals Sens |
Journal Index: | Pubmed |
Volume: | 9 |
Number: | 2 |
Identification Number: | https://doi.org/10.4103/jmss.JMSS₅₆₁₈ |
ISSN: | 2228-7477 (Print) 2228-7477 (Linking) |
Depositing User: | Zahra Otroj |
URI: | http://eprints.mui.ac.ir/id/eprint/11810 |
Actions (login required)
View Item |