
Introduction
There is a growing consensus of interest in the use of botanical 
material in rheumatoid arthritis and osteoarthritic disorders. 
Avocado and soybean oils contain a class of biologically active 
compounds classified as unsaponifiable lipids (avocado/
soybean unsaponifiables [ASUs]).1 The main components of 
ASU, in terms of weight, are the phytosterols beta-sitosterol, 
stigmasterol and campesterol respectively. Early studies have 
reflected that the main phytosterols action corresponds to their 
ability in inhibiting cholesterol absorption and interfering 
with endogenous cholesterol biosynthesis.2 Avocado/
soybean stimulates Coll2 and Agg synthesis while inhibiting 
stromelysin activity in osteoarthritic chondrocytes.3,4 The 

in-vitro cartilage model usually used to test ASU is based 
on monitoring the decline of interleukin-1 (IL-1)-induced 
metalloprotease activity and eicosanoid or nitric oxide 
synthesis (all agents promoting tissue inflammation and 
cartilage degradation).5

Among a variety of the used scaffolds, the composite scaffold 
prepared by filling soft hydrogels into hard sponges is highly 
capable of cartilage regeneration since its advantages can be 
maintained while avoiding the shortcomings. Irrespective of 
the higher even distribution of the cells and maintenance of the 
cell phenotype in hydrogel, bioactive factors, such as growth 
factors and functional genes, are conveniently loaded into the 
filled hydrogel with preserved bioactivity. These factors are 
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Abstract
Introduction: Avocado and soya unsaponifiables (ASU) have been reported to be useful for the treatment of cartilage diseases. The aim of this study 
was to detect whether avocado/soybean can have any effect on the chondrogenesis of human adipose-derived stem cells on polylactic-co-glycolic 
acid/fibrin hybrid scaffold or not.
Materials and Methods: The poly-lactic-co-glycolic acid (PLGA)/fibrin scaffolds were seeded with cultured human adipose tissue-derived stem 
cells (hADSCs), which were then divided into three groups: control, TGF-β3, and ASU and the results were analyzed 14 days later. The viability 
of the cells in different groups were assessed by MTT. The expression of chondrogenic-related genes Sox9, type II collagen, Aggrecan, type X 
collagen, and type I collagen were quantified by real time polymerase chain reaction (PCR). Protein expression levels of collagen type II and X 
were evaluated by Western blotting.
Results: Enhanced cellular viability was observed in the ASU group compared to the transforming growth factor beta-3 (TGF-β3) group. Analysis 
of aggrecan (Agg), type II collagen (Coll2) and SOX9 revealed that ASU and TGF-β3 induce hADSCs on PLGA/fibrin scaffold to differentiate into 
chondrocytes in-vitro. Moreover, a significant decrease was observed in the expression of type X (Coll10) and I collagen (Coll1) genes in the ASU 
group compared to the TGF-β3 group. Protein levels of type II collagen (Coll2) significantly increased in TGF-β3 and ASU groups in comparison 
with those of the control group. However, protein levels of Type X collagen (Coll10) significantly declined in the ASU group when compared with 
the TGF-β3 group. 
Conclusions: The results of the present study indicated that hADSCs containing the ASU in PLGA/fibrin hybrid scaffold are an effective way to 
potentially enhance Cartilage-specific genes with less hypertrophy and Fibrosis in-vitro.
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known to regulate the proliferation and differentiation of the 
seed cells which is particularly important when stem cells are 
used.6

Synthetic scaffold allows a better control of surface 
morphology, shape and physicochemical and mechanical 
properties and possesses predictable biodegradation kinetics. 
Three-dimensional (3-D) poly-lactic-co-glycolic acid 
(PLGA), which belongs to one of the synthetic scaffolds, 
has been generally investigated to serve as the substitute for 
tissue regeneration. It has been approved by the Food and 
Drug Administration (FDA) of the US for certain clinical 
applications. However, PLGA fails to present a favorable 
surface for cell adhesion, proliferation, and differentiation 
stemmed from the hydrophobic surface and the lack 
of specific cell-recognizable signals.7 To overcome this 
drawback, an alternative approach addresses the creation of 
a composite scaffold employing PLGA and a multifunctional 
biological protein. Because the composite scaffold can be used 
to create a biomimetic cellular environment by balancing 
the biofunctional and structural elements, the advent of 
biosynthetic composite scaffold signifies a major success in 
tissue engineering.8

Fibrin as an excellent natural polymer has attracted a 
crucial attention in tissue engineering. It presents several 
important features to the scaffold material such as: 1) it is an 
FDA approved material and has widely been used in clinical 
settings due to its high affinity; 2) it possesses hydrophilicity, 
biocompatibility, and biogradation properties; and 3) it is rich 
in fibrinogen protein which is a well-characterized extra-
cellular matrix (ECM) molecule with a central role in tissue 
remodeling and chondrocyte–ECM interaction.9

Recently, it was demonstrated that human adipose tissue 
has mesenchymal stem cells (adipose tissue-derived stem 
cells, hADSCs) that can be differentiated into multiple cell 
lineages, including chondrocytes. These cells have great in-
vitro expansion properties and are potentially an alternative 
cell source for cartilage transplantation.10,11 The hADSCs have 
several advantages over bone marrow stem cells, including 
easy accessibility and minimal invasiveness. 

Although the precise mechanism underlying 
chondrogenesis in hADSCs is not yet clear, many studies 
have revealed that growth factors including transforming 
growth factor-β3 (TGF-β3), insulin like growth factor-1, 
and fibroblast growth factor can trigger the chondrogenic 
differentiation of mesenchymal stem cells.11,12

Much as ASU has been used in the treatment of 
osteoarthritis, yet information regarding the effect of in-
vitro use of Avocado/Soybean on chondrogenic induction in 
hADSCs in PLGA/fibrin scaffold remains to be obtained. The 
aim of this study was to investigate the impact of ASU on the 
chondrogenic differentiation of ADSCs in the PLGA/fibrin 
scaffold.

Materials and Methods
In order to carry out this study the following tools were 
purchased from varying facilities: PLGA copolymer 
(RESOMER® RG 504H, PLGA; 48/52wt% poly (lactide)/
poly (glycolide) with inherent viscosity of 0.45-0.60 dL/g 

(25ºC; 0.1% in chloroform)) was purchased from Resomer 
Boehringer Ingelheim, Germany; Hyaluronic acid sodium 
salt out of Streptococcus equi from Sigma-Aldrich Co.; 
methylene chloride (CH2Cl2, M=84.93 g/mol), triethyl 
phosphate (TEP: C6H15O4P), calcium nitrate tetra-hydrate 
(Ca(NO3)2.4H2O) and hydrochloric acid (HCl) from 
Merck Inc.; sodium chloride (NaCl) extra pure salt from 
Sigma-Aldrich; Cryoprecipitated Antihemophilic Factor 
(Cryoprecipitated AHF) and fresh frozen plasma (FFP) from 
the Blood Transfusion Organization of Isfahan, Iran; Calcium 
gluconate 10% from the pharmacy; and avocado/soybean 
from Sigma-Aldrich Co.

Fabrication and Characterization of the Hybrid Scaffold
As previously described, 3-D PLGA scaffold was prepared 
via solvent casting and particulate leaching technique using 
methylene chloride.13 Briefly, polymer/solvent solution (8% 
w/v PLGA in methylene chloride) was casted in cylindrical 
silicon molds (7 mm in diameter and 3 mm in height) 
which were filled with NaCl salt particles (particle size of 
approximately 180 µm) as porogen particle. Then, the scaffolds 
were dried at room temperature for 12 hours. Finally, to leach 
out the NaCl particles, samples were immersed in deionized 
water for 3 times a day in 2 days to produce highly porous 
structure.

Fibrin Preparation
The FFP pocket was placed into bain-marie for 30 minutes 
at 37ºC. Then, a mixture of FFP (16 mL) and calcium 
gluconate (10 mL) was prepared and casted in a falcon tube 
so as to be incubated for 90 minutes. After on, the mixture 
was centrifuged with 2200 rpm for 10 minutes. After 
centrifugation, the clear supernatant was collected in a falcon 
tube decanted for thrombin preparation. Fibrinogen was then 
extracted from cryoprecipitated AHF pocket by heating in 
bain-marie for 20 minutes at 37˚C. Finally, a mixture which 
consisted of equal amounts of thrombin and fibrinogen was 
used to form fibrin clot.13,14

Isolation & Proliferation of ADSCs and Cell Culture on PLGA/
Fibrin Composite Scaffold
The hADSCs were extracted from subcutaneous abdominal 
adipose tissue harvested from four patients (30-50 years) 
(Consent had been obtained from the patients in advance.). 
Adipose tissue was mechanically crushed and rinsed with 
PBS (Sigma) and was then digested with 0.075% type I 
collagenase (Sigma) solution for 30 minutes at 37˚C. Next, 
Dulbecco’s Modified Eagle Medium (DMEM) low glucose 
medium (Sigma) containing 10% FBS (Invitrogen) was added 
for enzyme inactivation before the solution was centrifuged 
(15 minutes, 1200 rpm). After removing supernatant, the 
cell pellet was cultured in 25 cm2 flasks with DMEM low 
glucose, 1% penicillin and streptomycin (Gibco), and 10% 
FBS and then incubated in 5% CO2, 37˚C. Then, the medium 
was changed every 4 days. When the cells reached 80% 
confluence, they were detached with 0.05% trypsin/0.53 mM 
ethylenediaminetetraacetic acid (Sigma) and the cells were 
seeded at P3 in the scaffolds.10 The scaffolds were sterilized 
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with 70% ethanol for 60 minutes, disinfected via ultraviolet 
light for 2 hours and rinsed with PBS. The sterile scaffold was 
kept in a 24 well cell culture plate. Finally, the PLGA scaffolds 
were soaked in hADSCs-fibrinogen suspension (1 × 106 cells/
scaffold) and polymerized by dropping thrombin-calcium 
chloride (CaCl2) solution.15

Cell Viability
The viability of hADSCs in the PLGA/fibrin scaffold among 
different groups was assessed by the 3-(4, 5-dimethylthiazol-
2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay on day 
14. First, the medium of each well was removed, washed with 
PBS, and replaced with 400 μL serum free medium and 40 μL 
MTT solution (5 mg/mL in PBS). Second, it was incubated for 
4 hours at 37˚C, 5% CO2. The medium was then discarded, 
400 μL DMSO (Sigma) was added to each well, and the 
scaffold was incubated in the dark for 2 h. A purple color 
was created by DMSO after dissolving the formazan crystals. 
Later, 100 μL of the solution was transferred to a 96-well plate 
and the absorbance of each well was read at 570 nm with an 
ELISA reader (Hiperion MPR4). The assays were performed 
in triplicates.16

RNA Isolation and Real-Time Polymerase Chain Reaction 
Real-Time quantitative RT-PCR was performed to estimate 
mRNA expression of Coll2, Coll1, Coll10, Agg and SOX9 
genes in hADSCs quantitatively  among different groups. 
First, total RNA was isolated by RNeasy mini kit (Qiagen) 
and treated with RNase-free DNase set (Qiagen) to eliminate 
genomic DNA. The RNA concentration was determined 
using a bio photometer (Eppendorf). Second, total RNA 
(100 ng) was reverse-transcribed to cDNA by RevertAid™ 
First Strand cDNA Synthesis kit (Fermentas) according to 
the manufacturer’s instructions. Maxima SYBR Green Rox 
qPCR master mix kit (Fermentas) was used for real-time 
RT-PCR (Primer sequences are shown in Table 1. Later, real-
time PCR reactions were performed using the comparative Ct 
(∆∆Ct) method. Finally, elative expression level of the genes 
was computed by calculating the ratio of the amount of the 
genes to that of the endogenous control (GAPDH). Melting 

Table 1. Primers Used in Real Time PCR

Gene Primer Sequences (Forward and Reverse)

collagen II-F CTGGTGATGATGGTGAAG

collagen II –R CCTGGATAACCTCTGTGA

sox-9 –F TTCAGCAGCCAATAAGTG

sox-9 –R TTCAGCAGCCAATAAGTG

collagen x –F AGAATCCATCTGAGAATATGC

collagen x – R CCTCTTACTGCTATACCTTTAC

collagen I – F CCTCCAGGGCTCCAACGAG

collagen I – R TCAATCACTGTCTTGCCCCA

Aggrecan-F GTGGGACTGAAGTTCTTG

Aggrecan-R GTTGTCATGGTCTGAAGTT

GAPDH-F AAGCTCATTTCCTGGTATG

GAPDH-R CTTCCTCTTGTGCTCTTG

Table 2. Time and Temperature of the Real-Time PCR Cycles

Steps Temperature and Time

Initial denaturation 95ºC for 10 min

Cycle denaturation 95ºC for 15 s

Annealing & extension 60ºC for 1 min
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Figure 1. Comparison of MTT Assay Results Between ASU and TGF-β3 Groups.
a Significant compared to control group (P ≤ 0.05).

curve was produced to determine the melting temperature of 
specific amplification. These experiments were carried out in 
triplicate (Table 2).17

Western Blot Analysis
The radio-immune precipitation assay (RIPA) buffer was 
used to lyse cultured cells to prepare protein extraction. 
Then, protein samples were electrophoresed at 70 V for 120 
minutes on 7% SDS polyacrylamide with 5% stacking gel. The 
proteins were later transformed with a nitrocellulose paper at 
40 mA for 120 minutes. The nitrocellulose blot was blocked 
with a solution of 4% (W/V) dry milk for 3 hours. The blot 
was washed in TTBS and then incubated with collagen type I 
monoclonal antibody (Abcam) at a 1:1000 dilution overnight. 
Finally, the goat anti-mouse secondary antibody was added 
at a dilution of 1:5000 for 3 hours. After final washing, the 
protein bands were detected with DAB.18 The ImageJ method 
was employed for accurate western blot quantification.

Statistical Analysis
Kolmogorov-Simonov test was used for assessing the normal 
distribution of variables. Moreover, (one-way-analysis of 
variance) (ANOVA) with LSD post hoc test were applied for 
the comparison of MTT, real-time PCR, and western blot 
results in different groups.

Results
MTT Results
The MTT results on the fourteenth day showed a higher 
viability in the ASU affected group compared to the TGF-β3 
group; the difference, however, was not significant (P > 0.05) 
(Figure 1).

Real-Time Polymerase Chain Reaction
The results of the real-time PCR represented that SOX9, Coll2 
and Agg gene expression in the TGF-β3 and ASU groups stand 

http://www.biotechrep.ir


Hashemibeni et al

J Appl Biotechnol Rep, Volume 6, Issue 4, 2019                                         http://www.biotechrep.ir148

significantly higher (P < 0.05) than those in the control group. 
In addition, the results of the real-time PCR indicated that 
Coll10 (as hypertrophic marker) and Coll1 (as fibrous marker) 
gene expression in the group affected by ASU is lower than 
that in the TGF-β3 and control groups (P < 0.05) (Figure 2).

Western Blot Analysis
The results of the western blot revealed a significantly 
higher level of Coll2 protein in the TGF-β3 and ASU groups 
compared to the control group (P < 0.05). Additionally, the 
results of the western blot indicated that the Coll10 protein in 
the group affected by ASU turns to be lower than the TGF-β3 
and control groups (Figure 3).

Discussion
Tissue engineering widely relies on the use of 3D porous 
scaffolds to present an appropriate environment for the 
renewal of tissues and organs. These scaffolds fundamentally 
act as a template for tissue formation and are usually seeded 
with cells or occasionally with growth factors.19 A well-
designed 3D scaffold is an important factor to guide tissue 
formation in-vitro and in-vivo. Numerous attempts have been 
made for tissue reconstruction using the PLGA based studies. 
A number of methods, such as gas forming, freeze-drying 
or salt leaching have been reported to produce 3D porous 
matrices from natural and synthetic polymers. In the present 
study, the solvent casting and particulate leaching system was 

successfully used to fabricate the PLGA scaffold.13

A PLGA scaffold fabricated on a SC/PL system is not 
much appropriate for cell attachment, which in turn affects 
cell proliferation and differentiation. So a hybrid scaffold is 
required to solve the problem. Therefore, an effort was made 
to overcome this problem by using fibrin in combination with 
PLGA.9 

Growth factors play a crucial role in the regulation 
of adult stem cells differentiation. A number of studies 
have demonstrated the potential of bone morphogenetic 
protein, insulin-like growth factor and TGF-β3 in inducing 
chondrogenic differentiation in-vitro and promoting the 
formation of cartilage-like tissue in-vivo.6,20,21 However, 
some growth factors such as TGF-β3 not only upregulate 
the expression of hyaline cartilage specific markers, but 
unavoidably lead to further hypertrophic differentiation 
and contribute to the development of fibrous cartilage.22-24 
Furthermore, rapid degradation, easily lost activity, and 
the high cost of growth factors limit their widespread use, 
particularly in clinical practices.25-27

The ASUs are natural vegetable extracts made up of avocado 
and soybean oils in a proportion of one-third to two-thirds.28 
In a study, Gabay et al reported that avocado/soybean reduce 
the activity of the transcription factor nuclear factor-κB in an 
inflammatory model induced by tumor necrosis factor-α and 
protect chondrocytes from damage due to osteoarthritis.29 
Previous studies have revealed that ASU significantly affects 

Figure 2. Quantitative Expression Status of the Agg, Sox 9, Coll2, Coll10 and Coll1 Genes Analyzed by Real-Time PCR.
a Significant compared to control group; b Significant compared to ASU group (P ≤ 0.05).
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the expression levels of cartilage specific genes Coll2, Agg and 
SOX9.4 Similarly, as shown in this study, ASU upregulates the 
expression levels of these genes significantly. 

It has been shown that a number of mechanisms can influence 
chondrocyte metabolism. For example, ASU enhances the 
synthesis of TGF-β330 and inhibits metalloprotease activity 
and eicosanoid synthesis.31 In addition, sterols are quickly 
incorporated into the cells and enhance cellular antioxidant 
status.32 In regards to cell viability, the results of the present 
study are also in agreement with those of Basiri et al’s study. 
As they maintain, the treatment with ASU promotes the 
viability and proliferation of the ADSCs compared to the 
treatment with TGF-β3.33 In the present study, it was observed 
that TGF-β3 alone leads to a higher collagen x expression. 
However, the presence of ASU does not potentiate the effect 
of the growth factors on hypertrophic differentiation while 
producing chondrogenic differentiating effects. Similarly, 
other studies identified that ASU down regulates collagen x 
gene expression.34 Furthermore, Blaine et al demonstrated 
that ASU significantly affects the expression levels of 
cartilage-specific genes and leads to higher levels of Agg and 
Coll2 production.28 It was similarly observed in the present 
study that ASU notably upregulates the expression levels of 
these genes, increases the staining intensity and protein levels 
of Coll2 while reducing Coll10 protein.

Conclusions
Using ASU can induce chondrogenesis in hADSCs in PLGA/
fibrin composite scaffold. This can be deduced with the 
increase of special markers of hyaline cartilage and reduction 
of hypertrophic and fibrosis markers in comparison with the 
growth factor TGF-β3. In general, this nature compound is 
suitable for the inducing factors of chondrogenesis.
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