
Introduction
Skin burn injury is considered as a critical clinical issue that 
profoundly affects the life quality of patients.1-3 It has been 
reported that about 2 million people are burned annually in 
the United States, among which around 80 000 are hospitalized 
and 6500 of them die.4  The healing process of skin in burn 
injuries depending on the degree and severity of the damage, 
ranges from 3 (in superficial partial-thickness burns) to 

several weeks (in deep partial-thickness and full-thickness 
burns) (4-8). Burn wound healing is a complicated process 
that involves many cellular and molecular mechanisms and 
is orchestrated by cytokines and growth factors secreted from 
cells (such as macrophage and neutrophils) into the injured 
area. These factors affect the proliferation and migration of 
keratinocytes and fibroblasts.9-11

Epidermal growth factor (EGF), vascular endothelial 
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investigated by H&E and Malory’s trichrome staining. The number of MSCs in blood samples was also determined by flow cytometry assay. 
Results: According to the results, intravenously administration of G-CSF significantly increased collagenesis and number of fibroblast cells infiltrated 
into the burned site, while decreased the severity of acute inflammatory response and amount of inflammatory cells comparing to control. The 
number of MSCs in bloodstream, representing the rate of MSCs migration, showed a 4-fold increase in the experimental group compared to control. 
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growth factor (VEGF), transforming growth factor beta 
(TGF-β) and granulocyte-colony stimulating factor (G-CSF) 
are major cytokines and growth factors involved in this 
process.12 Among those, G-CSF is a cytokine which specifically 
stimulates differentiation of bone marrow progenitor cells to 
granulocytes and macrophages.13 The G-CSF also, stimulates 
proliferation of keratinocytes in an autocrine manner which 
results in regeneration of damaged skin.14 In vitro studies have 
shown that G-CSF enhances re-epithelialization through 
increasing the proliferation of keratinocytes.12 In addition, it 
has been demonstrated that G-CSF augments the migration 
and proliferation of endothelial and bone stromal cells from 
bone marrow into blood stream.15 Taken together, G-CSF 
plays a crucial role in burn wound healing as a cytokine.9,15 
To fully treat third degree burn wounds, early dermabrasion 
and escharectomy followed by covering with skin grafts are 
recommended.8,16 Stem cell therapy has been established to 
overcome the obstacles associated with the application of skin 
substitutes such as difficulty and expensiveness.17

Stem cells, especially bone marrow-derived ones, have been 
found to be a promising cell source for treating burn injuries 
in recent decades. Easy accessibility and differentiation 
capabilities to a variety of cell types such as blood vessel cells, 
perifollicular cells, perisebaceous gland cells, keratinocytes 
and fibroblasts, which all play vital roles in the healing process, 
have made stem cells a potential source for cell therapy.18 It has 
been shown that efficiency of burn healing with mesenchymal 
stem cells (MSCs) transplantation is higher than other types 
like, fetal fibroblast cells. Nevertheless, lack of telomerase 
activity, low maintenance and proliferation rate of these cells 
in vitro have limited the applications of such cells.19 Regarding 
the fact that the G-CSF may affect the mobilization of MSCs 
from bone marrow, in the current study, this cytokine has 
been administrated intravenously in the third-degree burn 
wound model of rats and then its effects were evaluated on 
MSCs infiltration and wound healing in vivo.

Materials and Methods
In Vivo Study
The current study was performed on 40 adult male Sprague-
Dawley rats (weighing 180–220 g) purchased from Pasteur 
Institute of Iran and acclimatized for one week under standard 
conditions prior to the experimental study. The rats were 
anesthetized by an IP injection (5 mg/kg body weight) of a 
4:1 solution of ketamine hydrochloride and xylazine (Sigma, 
USA). After a general anesthesia induction, the back skins of 
animals were shaved by an electric clipper and then, exposed 
directly to boiling water (98ºC) for 30 seconds. The leather 
cover was used in order to avoid burning of uninvolved 
areas.20 The rats were randomly divided into 2 experimental 
groups: in the first group, the burned animals were treated 
with G-CSF and in the second one, normal saline solution 
was applied (each group containing 5 rats). After burning, 
the animals were intravenously administrated with G-CSF 
and normal saline for 9 consecutive days.21 The study was 
performed according to the guiding principles in the care and 
use of animals (Ethical code: IR.TUMS.REC 1390.926).22 

Flow Cytometric Analysis
The flow cytometric analysis was performed to determine the 
mobilization rate of the MSCs from bone marrow into the 
blood stream. Half an hour after the last dose of G-CSF and 
normal saline injection, a 5-mL blood sample was taken from 
each animal. The mononuclear cells were isolated from the 
blood samples using ficoll (Sigma, USA). The isolated cells 
were then incubated with monoclonal anti-CD90 (FITC, 
Santa Cruz) and monoclonal anti-CD106 (PE, Santa Cruz) 
for 30 minutes. Anti IgG1-PE (Santa Cruz) and IgG1-FITC 
(Santa Cruz) served as negative controls. The population 
of CD90 and CD106 positive cells, representing the MSCs, 
were measured by flow cytometry (Facscaliber, Becton 
Dickinson).23

Histological Analysis
Histological observations were carried out 3, 5, 7 and 30 days 
after drug administration. To this end, five rats were randomly 
selected from each group. The histological specimens were 
collected from different areas of the burned site using a biopsy 
punch. The samples were fixed in 10% formalin, dehydrated 
through a series of ethanol concentrations (70%, 80%, 90%, 
100% in distilled water), followed by embedding in xylene 
and paraffin. The samples were then sectioned serially (8 μm 
in thickness) by a microtome (Rotary microtome, MICRO DS 
4055). The sections were stained with Harris Hematoxylin 
(EM Science) and eosin Y (Sigma, USA), and Malory’s 
trichrome for histological analysis.24,25 The rate of collagen 
synthesis, the presence of inflammatory cells and number 
of fibroblast in the defected area were the major criteria 
evaluated in this study. 

Statistical Analysis
The independent sample t test was used for statistical data 
analysis. A P value of ≤ 0.05 was defined as the level of 
significance.

Results
Flow Cytometric Analysis 
According to the obtained results from the flow cytometry 
assay, the number of CD160+/CD90+ cells in peripheral blood 
significantly increased (approximately 4-fold) in the G-CSF 
group compared to the control group (Figure 1). The average 
number of MSCs in the experimental and control groups was 
624 cells/mL and 155 cells/mL, respectively. 

Histological Analysis
The histological observations revealed that the burn wound 
healing in the experimental group was remarkably faster than 
those in the control group (Figures 2 and 3). 

The microscopic observations showed that the G-CSF 
administration significantly affected the number of fibroblast 
cells in the burned area of the experimental group in 
comparison to the control group. As a result, the inflammatory 
cells such as lymphocytes had a significant decrease in the 
G-CSF group compared to the control group by day 15 post-
administration (Figure 2). The average number of fibroblast 
cells in the G-CSF group showed a 4.5-fold increase in 
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comparison to the control group after day 15 (28.8 and 6.4 
cells in experimental and control, respectively) (P ≤ 0.01) 
(Figure 4).

Figure 3 shows the active fibroblast cells (black arrow) and 
collagen fibers in the control and collagen fibers and fibrocyte 
cells in the experimental samples, respectively. It is observable 
that, the G-CSF administration positively increased the 

Figure 1. There was a 4-fold increase in number of MSCs in experimental group 
(average 1.39 %) compared to control (average 0.21 %) (a). The flow cytometry 
results indicate the number of CD106 (PE) and CD90 (FITC) positive cells among 
the mononuclear cells isolated from the blood samples of rats (b). Asterisk 
indicates a significant difference with control (P value ≤ 0.001).

Figure 2. The number of inflammatory cells (lymphocytes) was compared 
between H&E-stained specimens of the control and experimental group on 
day 15. Number of these cells decreased remarkably in the G-CSF group in 
comparison with control. Arrows show inflammatory cells. ×10 magnification.

Figure 3. H&E Stained Samples of the G-CSF and Control Groups on Day 30. 
A large numbers of active fibroblast cells (white arrow) and a few numbers of 
collagen fibers (red fibers) were observed in the control samples. In the G-CSF 
sample, the fibrocyte cells (black arrow) and collagen fibers (red fibers) were 
observed numerously compared to control. ×10 magnification.

fibroblast infiltration and collagenesis in the defect area. The 
Malory’s Trichrome stained samples showed a remarkable 
collagenesis increase in the experimental group compared 
to the control group after days 15 and 30 (Figure 5). As it is 
shown in Figure 5, the collagenesis in G-CSF administrated 
group was clearly observed by day 15. 

Discussion
The efficiency and therapeutic applications of bone marrow-
derived stromal cells in soft tissue engineering, especially 
skin, have been reported by several studies.26-28 In this line of 
research, Mansilla et al have found that the number of these 
cells will increase in peripheral blood after burn injuries.27 
Additionally, several studies have demonstrated that both 
migrations of stem cells and regeneration of damaged tissues 
are mediated by some growth factors such as G-MCSF. In 

Figure 4. The Number of Fibroblast Cells in Defect Area on Day 15. The 
fibroblasts showed a 4.5-fold increase in the G-CSF compared to control group. 
Asterisk indicates a significant difference with control (P value ≤ 0.001).

Figure 5. The Comparison of the Collagenesis Between the Malory’s Trichrome 
Stained Samples of the G-CSF and Control Groups After Days 15 and 30. As it 
is clearly observable, the collagenesis remarkably increased in the G-CSF group 
compared to control in both days 15 and 30. ×40 magnification.
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the current study, the role of G-CSF administration has been 
represented on the mobilization of bone marrow-derived 
stromal stem cells into the peripheral blood and its healing 
potential of third-degree burn injury created in rats. 

The results obtained from this study revealed that the 
administration of the G-CSF significantly increases the 
number of MSCs in peripheral blood 4-fold (P ≤ 0.05). These 
results were consistent with other studies conducted in this 
area.19,21,29,30 The mechanisms by which the G-CSF affects the 
migration of MSCs are not fully understood, but seems to 
be associated with SDF-1/CXCR4 ligand/receptor pair. The 
SDF-1, as a chemokine, and its receptor CXCR4 are found 
to have an essential role in stem cells homing.31 It has been 
reported that G-CSF reduces the concentration of SDF-1 
in bone marrow and leads to release the progenitor cells 
into the peripheral blood.32 The histological observations 
showed a decrease in the number of inflammatory cells in 
the experimental samples compared to the control samples 15 
days post-injection. According to other studies, these findings 
could be due to the anti-inflammatory role of mesenchymal 
stem cells. These results were in line with those obtained from 
Shen et al’s33 study in which locally administration of G-CSF 
in the rat full-thickness wounds significantly decreased the 
inflammatory cells within the wound bed. 

 The mesenchymal cells can eventually differentiate to 
various cell types such as collagen producing fibroblasts.34,25 
The present study showed a significant difference in the 
number of fibroblasts among experimental and control 
samples (P ≤ 0. 01) in day 15. The MSCs are involved in the 
formation of extracellular matrix (collagen type I, IV and 
fibronectin) through secretion of numerous cytokines and 
growth factors and thereby provide a microenvironment to 
support cell growth and maturation, especially in damaged 
tissues. Chen et al showed the potential of MSCs in secretion 
of some paracrine factors that are associated with the repair 
of damaged tissues.36 In the present study, the collagen fibers 
were clearly observed in biopsy specimens of the test group 
by day 15 post injection. The higher collagenesis rate in the 
experimental group was quite evident in comparison to the 
control. Additionally, the G-SCF group showed a decreased 
cellular infiltration and increased number of fibroblast cells 
when compared with control samples. The therapeutic role of 
the G-CSF in this study may not only be due to the increase of 
bone marrow-derived cells infiltration, but also results from 
its effects on the migration of endothelial precursors and 
hematopoietic stem cells into defect area. All of these cells 
are responsible for angiogenesis and wound healing through 
secretion of angiogenic factors such as VEGF, bFGF and Ang-
1.37 On the other hand, the role of G-CSF in induction of 
endothelial cell proliferation has been previously reported.38 
Furthermore, the G-CSF administration on cardiac defects 
found to increase the expression of the adherent molecules 
such as ICAM-1 at the site of damaged blood vessels as well 
as the infiltration of MSCs.39 Taken together, the data of this 
study strongly demonstrates the positive effects of G-CSF 
on migration of bone marrow-derived cells and eventually, 
healing the skin lesions, that is concordant with other studies 

that showed the role of MSCs in skin injuries healing without 
using the G-CSF.18,27,28,36

Conclusions
The increasing importance of cell therapy in burn wound 
healing and the necessity of developing a safe and effective 
therapeutic method, has attracted the attention of researchers 
for designing an alternative strategy to minimize the challenges 
associated with stem cell therapy such as rejection and low 
proliferation rate. Recently, researchers have focused on the 
application of growth factors involved in tissue regeneration 
rather than stem cells as an alternative strategy in cell therapy, 
in damaged tissue repair. In this line of research, the efficacy 
of G-CSF administration in MSCs migration and burn injury 
healing in rats was examined in this study. All the collected 
data clearly indicated the potential role of the G-CSF in MSCs 
infiltration to the defect site and third-degree burn wound 
healing. Therefore, this study can serve as a pilot to further 
investigate the therapeutic abilities of the G-CSF in soft tissue 
engineering.
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