Down-Regulation of DDR1 Induces Apoptosis and Inhibits EMT through Phosphorylation of Pyk2/MKK7 in DU-145 and Lncap-FGC Prostate Cancer Cell Lines

(2020) Down-Regulation of DDR1 Induces Apoptosis and Inhibits EMT through Phosphorylation of Pyk2/MKK7 in DU-145 and Lncap-FGC Prostate Cancer Cell Lines. Anti-Cancer Agents in Medicinal Chemistry. pp. 1009-1016. ISSN 1871-5206

Full text not available from this repository.

Abstract

Background: In cancer cells, re-activation of Epithelial-Mesenchymal Transition (EMT) program through Discoidin Domain Receptor1 (DDR1) leads to metastasis. DDR1-targeted therapy with siRNA might be a promising strategy for EMT inhibition. Therefore, the aim of this study was to investigate the effect of DDR1 knockdown in the EMT, migration, and apoptosis of prostate cancer cells. For this purpose, the expression of DDR1 was down regulated by the siRNA approach in LNcap-FGC and DU-145 prostate cancer cells. Methods: Immunocytochemistry was carried out for the assessment of EMT. E-cadherin, N-cadherin, Bax, Bcl2, and the phosphorylation level of Proline-rich tyrosine kinase 2 (Pyk2) and Map Kinase Kinase 7 (MKK7) was determined using the western blot. Wound healing assay was used to evaluate cell migration. Flow cytometry was employed to determine the apoptosis rate in siRNA-transfected cancer cells. Results: Our findings showed that the stimulation of DDR1 with collagen-I caused increased phosphorylation of Pyk2 and MKK7 signaling molecules that led to the induction of EMT and migration in DU-145 and LNcap- FGC cells. In contrast, DDR1 knockdown led to significant attenuation of EMT, migration, and phosphorylation levels of Pyk2 and MKK7. Moreover, DDR1 knockdown via induction of Bax expression and suppression of Bcl-2 expression induces apoptosis. Conclusion: Collectively, our results indicate that the DDR1 targeting with siRNA may be beneficial for the inhibition of EMT and the induction of apoptosis in prostate cancer.

Item Type: Article
Keywords: Discoidin domain receptor 1 (DDR1) epithelial-mesenchymal transition (EMT) small interfering RNA apoptosis MKK7 Pyk2 DOMAIN RECEPTOR 1 EPITHELIAL-MESENCHYMAL TRANSITION UP-REGULATION DISCOIDIN INVASION PROLIFERATION METASTASIS SUPPRESSES ACTIVATION CARCINOMA
Subjects: QZ Pathology > QZ 200-380 Neoplasms
Divisions: Faculty of Pharmacy and Pharmaceutical Sciences > Department of Clinical Biochemistry
Page Range: pp. 1009-1016
Journal or Publication Title: Anti-Cancer Agents in Medicinal Chemistry
Journal Index: ISI
Volume: 20
Number: 8
Identification Number: https://doi.org/10.2174/1871520620666200410075558
ISSN: 1871-5206
Depositing User: Zahra Otroj
URI: http://eprints.mui.ac.ir/id/eprint/12240

Actions (login required)

View Item View Item