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Abstract. Parkinson has remained as one of the most difficult diseases to diagnose, as there are no biomark-
ers to be measured, and this requires one patient to do neurological and physical examinations. As Parkinson
is a progressive disease, accurate detection of its symptoms is a crucial factor for therapeutic reasons. In
this study, we perform Multifractal Detrended Fluctuation Analysis (MFDFA) on measured keystroke time
series for three different categories of subjects: healthy, early-PD, and De-Novo patients. We have observed
different scaling behavior in terms of multifractality of the measured time series, which can be used as a
practical tool for diagnosis purposes. Additionally, the source of the multifractality has been studied which
shows that in healthy and early-PD subjects, multifractality due to the long-range correlations is stronger
than the influence of its probability distribution function (PDF) fatness, while in De-Novo patients, both
shape of PDF and long-range correlations are contributing to observed multifractality.

1 Introduction

A broad range of complex time series in nature shows
long-range correlations with scale-invariant behavior [1].
Statistically, these fluctuations often exhibit self-similar
or intermittent behaviors and can be characterized by the
multifractal spectrum [2]. A multifractal process may be
interpreted as a superposition of subsets, each charac-
terized by a given scaling exponent, and with a typical
amplitude fluctuations [3]. This means that one needs dif-
ferent scaling exponents to describe strong intermittent
and non-stationary time series. Although the multifractal-
ity phenomenon in the time series is not fully understood,
the multifractal characterization is useful for modeling
and reconstruction of time series. Characterization of com-
plex systems based on the observed scaling behavior is the
most important application of such analyses [3].

Long-range correlations are studied by scaling laws
and scaling exponents classify the underlying process.
According to the Wiener-Khinchin theorem, the two-point
correlation function 〈x(t+ τ) · x(t)〉 is directly related to
the power spectrum by a Fourier transform. The correla-
tion function is the linear regression in the (x(t+ τ), x(t))
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plane, and it is therefore known as a linear quantity in
the characterization of a given time series. Generally, one
needs to analyze higher-order (non-linear) statistical prop-
erties to fully characterize a given complex time series.
Let {x(t)} be a given time series and consider its incre-
ment over a certain time lag (scale) τ , which is defined
as ∆x(τ) = x(t+ τ)− x(t). We denote structure function
S(q, τ) as the q-order absolute moment of ∆x(τ), i.e.,

S(q, τ) = 〈|∆x(τ)|q〉. (1)

A process is called scale invariant if the absolute moment
S(q, τ) has a power-law behavior in a certain range of τ
[3–5]. Let us call ξq the exponent of the power law, i.e

S(q, τ) ' Cqτ ξq (2)

where Cq is a prefactor. Here x(t) is called monofractal
(or linear) if ξq is a linear function of q, and multifractal
(non-linear) if ξq is non-linear with respect to q. Multifrac-
tality has been introduced in the context of fully developed
turbulence in order to describe the spatial fluctuations
of the fluid velocity at very high Reynolds number [2].
In the recent years multifractal analysis has successfully
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been applied to study the scaling properties in variety
phenomena from correlation properties of coding and non-
coding DNA sequences, financial time series to analysis of
biomedical signals [6–32].

Among different methods for investigating the multi-
fractal structure of the non- stationary time series, there
are two more known applicable methods to detect the mul-
tifractal scaling exponents: the first one is the Wavelet
Transform Modulus Maxima (WTMM) method which is
based on the wavelet transformation [33–37]. It involves
tracing the maxima line in the transformed signal over
all scales. The second one is the Multifractal detrended
fluctuation analysis (MFDFA), which is based on a gen-
eralization of the usual detrended fluctuation analysis
(DFA) method [38–40]. MFDFA is the widely used tech-
nique, and it can reliably determine the multifractal
spectrum and multifractal scaling behavior of the time
series.

During the last decade, several studies suggest that
changes in multifractality of biomedical signals can be dif-
ferentiated between healthy and pathological conditions.
In this paper, we use the MFDFA method to investi-
gate the multifractality and scale-invariant properties of
the measured keystroke time series from patients with
Parkinson’s disease (PD) which is a slowly progressing
neural degenerative disease. Parkinson is the most com-
mon form of disorders in motor systems in the body. By
studying a given rhythmic task to these patients, one can
find out the abnormal patterns of their behavior. The
Parkinson persists over a long period (chronic), and symp-
toms grow worse over time (progressive). The scaling anal-
ysis approaches can be integrated into many other statis-
tical methods and machine learning techniques to enhance
the accuracy of Parkinson’s diagnosis [41–43]. The paper
is organized as follows. In Section 2, we described the
data used in this analysis. In Section 3, we briefly
review the MFDFA method to study the multifractality
of the time series. In Section 4, we present and discuss
the results.

2 Description of data

The neuroQWERTY MIT-CSXPD database which we
used in this analysis, contains finger-tapping recorded
in routine interaction with computer keyboards col-
lected from subjects with and without Parkinson’s disease
[41–43]. It is shown such interaction can be used as an
indicator of the motor signs in the early stages of Parkin-
son’s disease. The data include the key hold time, the time
required to press and release a key during the regular use
of computer keyboard without any change in hardware.

The dataset used in this study consists of 18 early
Parkinson’s disease (PD) cases and 24 De-Novo PDs cases,
i.e. newly diagnosed, drug-naive patients, and 30 healthy
subjects. The early-PD cases were the cases with less than
5 years from the diagnostics of PD, and the De-Novo
cases were the cases with the new diagnostic of PD, and
healthy subjects were subjects without any symptoms of
PD. The subjects of early PD dataset examined once,
but the subjects of the De-Novo dataset were examined

twice in two visits with 7 to 30 days intervals. The data
source is a series of hold times, the time between press-
ing and releasing a key on a laptop keyboard. All subjects
have been reported that they use a computer, desktop,
or laptop, with at least thirty minutes of use on a daily
basis. A typing activity was done by all subject where
the text of typing activity is randomly selected for each
subject, but the system that monitored typing activity
was identical. The sequence of keyboard key down times
during the typing activity was recorded for each subject.
Hence, a time series of key down times were provided for
each subject where the length of these time series cor-
responded to the length of the text that subjects typed
during their typing activities. More detail about neuro-
QWERTY dataset can be found in [41–43]. In Figure 1
three typical keystroke time (time between pushing and
releasing each key) is plotted versus N (data points) for
each subject. The length of the time series are varied from
N ≈ 1000 to 2500 depends on the experiment.

3 Methods of analysis

In this section, we briefly review two standard methods,
i.e. correlation function and MF-DFA to investigate the
scaling and multifractal properties of stochastic processes.
Also, we describe the surrogating of time series by shuffle,
random-phase and rank-wised methods which are used to
detect the source of multifractality.

3.1 Long and short range correlations

For the given time series x(ti) ≡ x(i) for {i = 1, · · · , N},
we define the mean of x series as, < x >= 1

N

∑N
i=1 xi. The

anomaly of the time series, x̄i, is defined as x̄i = xi − 〈x〉.
For a stationary data the correlation function defined as

C(s) given by, C(s) = 〈x̄ix̄i+s〉 = 1
N−s

∑N−s
i=1 x̄ix̄i+s. If

x(i) is uncorrelated, C(s) for s > 0 will be zero. The short-
range correlations declining exponentially [44–47], C(s) ∼
exp(− s

sd
), with a specific decay time scale sd. For long-

range correlation, C(s) behaves power-law, C(s) ∼ s−γ

with the exponent 0 < γ < 1. The long-range correlation
is studied by the well-known Hurst exponent H = 1− γ/2
[44–47], and its power spectra can be characterized by
S(ω) ∼ ω−β . Here ω is angular frequency and power spec-
trum exponent is given by β = 2H − 1 for stationary
data set. In practice, almost all experimental data sets
are affected by some non-stationarities like trends, which
have to be well distinguished from the intrinsic fluctua-
tions of the process in order to find the correct scaling
behavior of the fluctuations. Nondetrending methods, like
correlation function, work well if the records are long and
do not involve trends. However, if trends are present in
the data, they will provide wrong results. Detrended fluc-
tuation analysis (DFA) is a well-established method for
determining the scaling behavior of noisy data in the pres-
ence of trends without knowing the trend’s origin and
shape a priori.
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Fig. 1. Segments of the time series of keystroke for a healthy, early-PD, and a De-Novo subject.

3.2 Detrended and multifractal detrended fluctuation
analyses

Detrended fluctuation analysis (DFA) and Multifractal
detrended fluctuation analysis (MFDFA) can used for
studying scaling properties and detecting long-range cor-
relations in general non-stationary time series. More detail
about these algorithms can be found in [38–40] and
[48–52]. In MFDFA approach, the time series (with the
length of N) is divided into the Ns = N

s segments, and
each segment is detrended using a polynomial function.
The generalized fluctuation function Fq(s), defined as
follows has scaling behavior with exponent h(q),

Fq(s) = { 1

2Ns

2Ns∑
v=1

[F 2
s (v)]

q
2 }

1
q ∼ sh(q) . (3)

The case q = 2 corresponds to the DFA. For q = 2, F2(s)
behaves as a power law regarding the scale s, with a
power law exponent, h(2) known as Hurst exponent. In
MFDFA, h(q) is called the generalized Hurst exponent.
The MFDFA approach can distinguish between small and
large fluctuation statistics for negative and positive values
of q. For stationary processes H = h(q = 2) < 1.0, is the
Hurst exponent, and for non-stationary processes, one can
show h(q = 2) > 1.0 [27,30]. In this case the Hurst expo-
nent can be calculated as H = h(q = 2) − 1 [39,45,51].
The Hurst exponent H = 0.5, indicates that the time
series are uncorrelated; 0 < H < 0.5 implies short-term
anti-persistence and 0.5 < H < 1 implies long-term persis-
tence [26]. For non-stationary time series, the correlation
exponent and power spectrum scaling are γ = −2H and
β = 2H + 1, respectively [6,45,47]. The function h(q) for
positive values of q represents the scaling behavior of the
segments with large fluctuations. On the contrary, for neg-
ative values of q small variances of F 2

s (v) in equation (11)
will dominate the average Fq(s) in equation (3) and h(q)
describes the scaling behavior of the segments with small
fluctuations [37].

There is a direct dependence between the generalized
Hurst exponent MF-DFA and the classical multifrac-
tal scaling exponents τ(q) (Renyi exponent) as, τ(q) =
qh(q)− 1 [37]. A monofractal time series with long-range

correlation is characterized by a single Hurst exponent
with no dependency of h(q) on q. However, a multifractal
time series has several Hurst exponents with dependence
of h(q) on q. The multifractal dimensions, D(q), is defined

as D(q) ≡ τ(q)
q−1 = qh(q)−1

q−1 . Legendre transformation from

τ(q) to f(α) is known as singularity spectrum, which

is given by [39,44], f(α) = qα − τ ′
(q) with α = τ

′
(q),

where α is the singularity strength or Hölder exponent
and τ

′
(q) = d

dq τ(q). The spectrum f(α) will be f(α) =

q[α − h(q)] + 1 with α = h(q) + qh
′
(q). The alternative

way to address the multifractality is the Hölder exponent.
In the multifractal case, the different parts of the struc-
ture are characterized by different values of α, leading to
the existence of the spectrum f(α).

3.3 The shuffled, rank-wise and random-phase
surrogated data

There are two main reasons for multifractality of given
time series,

1. Existence of wide or fat-tail probability density
function (PDF).

2. Existence linear and non-linear correlations in the
time series.

To understand the origin of multifractality, one can
explore each of these features separately [26,53–55]. For
destroying all types of correlations, we need to shuffle
data. In this way, we will study the influence of just the
shape of the distribution function of the data set on mul-
tifractality. For detecting effects of fat-tailed PDF, by
keeping linear correlation, we can change any distribu-
tion of given time series to a gaussian distribution with
a so-called Random-Phase (RP) data surrogating. This is
done simply by calculating the Fourier transform of time
series and multiplying them by random phases with uni-
form distribution [53]. Another method which exchanges
PDF of time series by a Gaussian distribution, is known as
Rank-Wised (RW) surrogation, that keeps linear and non-
linear correlations but non-gaussian distributional effect
are removed [26]. In this way to eliminate the dependence
of observed multifractality on the fat-tailed distribution,
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Fig. 2. Plot of Fq(s) vs. s for healthy subjects as well as for early-PD and De-Novo subjects without taking any medicine,
averaged over all the patients studied in each category. The slopes of F (s) for q = 2 have been shown as a reference. For healthy
subjects a crossover is observed at time scale S ≈ 48. In order to observe this crossover clearly, we have plotted the compensated
fluctuation functions s−h(q)F (s) in the insets with small offsets.

Fig. 3. Comparison of the estimated exponents h(q), τ(q) and singularity spectrum f(α) for healthy subjects and early-PD and
De-Novo subjects. The demonstrated curves correspond to the scales smaller than the crossover time scale (s < SH) for healthy
subjects. (a) Shows lower h(q) for healthy and De-novo subjects. Also, the degree of multifractality for each case is compared
in (b).

we have first ranked the N values of time series in the
original data, and then exchanged them rank wise by a
set of N numbers from a Gaussian distribution [54].

4 Results

4.1 Results of MFDFA for healthy subjects and
patients who are suffering from Parkinson’s disease

To investigate the multifractal properties of control sub-
jects and PD patients, one can compute Fq(s) as the
function of s. Figure 2 shows the log-log plot of Fq(s)
by MFDFA (order 1) for healthy subjects as well as for
early-PD and De-Novo patients. For healthy subjects, a
crossover has been observed at time scale SH ≈ 48. For
early-PD and De-novo subjects, no crossover is present.
Figure 3 compares the h(q) and f(α) of early-PD and
De-Novo subjects with the results obtained for healthy
subjects below time scale SH , and Figure 4 demonstrates
the same parameters but with considering the scales above
SH for healthy subjects. The dependency of h(q) on q,
demonstrate the multifractality of keystroke data sets in
all cases. Having h(q) < 1.0, put the keystroke time series
in the class of stationary processes.

By comparing the width of the singularity spectrum
∆α, the degree of multifractality can be measured. In
short time scales (below crossover SH), healthy subjects
show higher multifractality with ∆α = 0.29 ± 0.02 com-
pared to the large scales with ∆α = 0.16 ± 0.02. The
PD patients who treated with medicine (early-PD) have
∆α = 0.29± 0.05 comparable with De-Novo subjects with
∆α = 0.31± 0.05.

As a result, we can conclude that healthy subjects have
stronger multifractality in shorter time scales. At long
time scales, however, healthy subjects have monofrac-
tal behavior. Patients who are suffering from Parkinson
demonstrate more complex behavior which leads to a lit-
tle higher multifractality. Table 1 includes the estimated
∆α, averaged over all the patients in each categories.
Therefore, degree of multifractality, i.e. ∆α, can be consid-
ered as a potential indicator of patients who are suffering
from Parkinson’s disease. The higher complexity of finger
tapping time series for PD sufferers is according to our
expectations, due to the lack of ability of PD patients to
keep the long term rhythms, and also the higher intermit-
tency of the signals as a result of tremors. Dutta et al. have
also investigated multifractality of gait rhythm obtained
from heel strikes and the measured stride interval time
series [56] and have measured higher multifractality for
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Fig. 4. Comparison of the exponents h(q), τ(q) and singularity spectrum f(α) between healthy subjects (large time scales) and
early-PD and De-Novo subjects. The demonstrated curves are corresponded to the scales longer than the crossover (s > SH)
for healthy subjects.

normal subjects. Other similar studies, have also used
the multifractal analysis to quantify the statistics of
neuro-degenerative diseases [57,58].

4.2 Origin of the multifractality

By surrogating data using shuffling, random phase, and
rank-wised methods, the source of multifractality can
be understood. To determine the type of multifractality,
one can compare the fluctuation function for the origi-
nal time series, Fq(s), with the fluctuation function for
the shuffled, random phase and rank-wise surrogated data,
i.e., F shuf

q (s), FRP-sur
q (s) and FRW-sur

q (s), respectively. By
considering their ratio we have:

Fq(s)/F
shuf
q (s) = sh(q)−hshuf(q) = shcorr(q), (4)

Fq(s)/F
RP-sur
q (s) = sh(q)−hRP-sur(q) = shPDF-RP(q) (5)

Fq(s)/F
RW-sur
q (s) = sh(q)−hRW-sur(q) = shPDF-RW(q). (6)

Multifractality of a time series can be attributed to three
causes. The first is a broad probability density function
(PDF) of the time series, the second is a linear correla-
tion inherent in the data, and the third is the presence of
mixed linear and non-linear correlations. The result of sur-
rogated h(q), and f(α) for healthy subjects are shown in
Figure 5, and for early-PD and De-Novo patients depicted
in Figure 6.

In all type of subjects, the exponents hcorr(q),
hPDF-RP(q) and hPDF-RW(q) have dependency on q, reveal-
ing that the nature of multifractality in keystroke time
series are due to broadness of PDF and long-range corre-
lations. Also in RP-surrogated data, hPDF-RW(q) has the
least deviation from horigin(q) for all three type of sub-
jects, claiming that contribution of linear and non-linear
correlations are stronger than fatness of PDF. More could
be understood, by comparing hPDF-RP(q) and hcorr(q).
The deviation of hRP-sur(q) and hshuf(q) from h(q) is

Table 1. Estimated mean value of ∆α for healthy, early-
PD, and De-Novo subjects. In the last row, the mean of
∆α values for healthy and early-PD subjects are compared
to the ∆α value obtained for De-Novo subjects.

Subject Healthy early-PD De-Novo

∆αs<sc 0.29 ± 0.02 n/a n/a
∆αs>sc 0.16 ± 0.02 n/a n/a
∆αs(mean) 0.22 ± 0.02 0.29 ± 0.05 0.31 ± 0.05

determined by using a χ2 test, for instance,

χ2 =
1

N

N∑
i=1

[h(qi)− hs(qi)]2

σ(qi)2 + σs(qi)2
. (7)

Here hs(q) is the Hurst exponent of the desired sur-
rogation, which in our case is shuffled, RP-surrogation
and RW-surrogation. As hPDF-RW(q) has the least devi-
ation, here we only compare the obtained χ2 test values
for RW-Surrogation and shuffle methods. For healthy
subjects and in short time scales, s < SH , χ2

H,shuf =

9.20 and χ2
H,RP-sur = 6.21, and in large time scales,

s > SH , χ2
H,shuf = 20.63 and χ2

H,RP-sur = 4.66. While
the contribution of PDF and correlations are compara-
ble in short scales, their difference is more pronounced in
longer scales. The χ2 test values for early-PD subjects
are χ2

P,shuf = 12.03 and χ2
P,RP-sur = 2.27. For De-Novo

subjects χ2
D,shuf = 6.70 and χ2

D,RP-sur = 5.14.
Although the degree of multifractality, ∆α for early-PD

and De-Novo subjects are shown to be in the same level,
for De-Novo patients, both PDF fatness and long-range
correlations are equivalently important. One can conclude
that for patients without getting treatment (De-Novo sub-
jects), the probability of rare events have a high impact on
their multifractal behavior, while in early-PD cases med-
ication has made them to perform keystroke similar to
healthy subjects as the main source of the multifractality
for early-PD and healthy subjects is the long-range corre-
lations. The numerical values of χ2-test are summarized
in Table 2. Additionally, the ∆α values of surrogated data
are reported in Table 3.
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Fig. 5. The exponent h(q), and f(α) for original, shuffled, random-phase (RP) surrogated data and rank-wise (RW) surrogated
data sets of healthy subjects. (a) and (b) are for scales s < SH , and (c) and (d) are for s > SH .

Fig. 6. The exponent h(q), and f(α) for original, shuffled, RP-surrogated and RW-surrogated data sets of early-PD subjects
are demonstrated in (a) and (b) and De-Novo subjects are reported in (c) and (d).

In summary, in this paper, we have performed MFDFA
analysis on keystroke data sets of healthy, early-PD, and
De-Novo subjects. We have found that the degree of
multifractality can be taken as a measure to distinguish

patients suffering from Parkinson’s disease in compari-
son with healthy subjects. The nature of multifractal-
ity has been investigated in all three groups, showing
the importance of non-linear correlation and shape of

https://epjb.epj.org/
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Table 2. The χ2 values of RP-surrogated, RW-surrogated
and shuffled time series for healthy, early-PD, and De-
Novo subjects. In the last two rows, the mean values
of calculated χ2 for healthy and early-PD subjects are
compared to the their values for De-Novo subjects as no
crossover is found for them.

Subject Healthy early-PD De-Novo

χ2
shuf,s<sc 9.20 n/a n/a

χ2
RP-sur,s<sc 6.21 n/a n/a

χ2
RW-sur,s<sc 2.35 n/a n/a

χ2
shuf,s>sc 20.63 n/a n/a

χ2
RP-sur,s>sc 4.66 n/a n/a

χ2
RW-sur,s>sc 0.19 n/a n/a

χ2
shuf,s(mean) 14.91 12.03 6.70

χ2
RP-sur,s(mean) 5.43 2.27 5.14

χ2
RW-sur,s(mean) 1.27 0.75 1.51

Table 3. The ∆α values of RP-surrogated, RW-
surrogated and shuffled time series for healthy, early-PD,
and De-Novo subjects. In the last two rows, the mean
value of calculated χ2 for healthy and early-PD subjects
are compared to the their values for De-Novo subjects as
no crossover is found for them.

Subject Healthy early-PD De-Novo

∆αshuf,s<sc 0.33 ± 0.03 n/a n/a
∆αRP-sur,s<sc 0.61 ± 0.06 n/a n/a
∆αRW-sur,s<sc 0.11 ± 0.02 n/a n/a
∆αshuf,s>sc 0.22 ± 0.03 n/a n/a
∆αRP-sur,s>sc 0.64 ± 0.08 n/a n/a
∆αRW-sur,s>sc 0.07 ± 0.03 n/a n/a
∆αshuf,s(mean) 0.27 ± 0.03 0.30 ± 0.05 0.25 ± 0.03
∆αRP-sur,s(mean) 0.62 ± 0.07 0.61 ± 0.10 0.68 ± 0.08
∆αRW-sur,s(mean) 0.09 ± 0.03 0.06 ± 0.03 0.10 ± 0.02

probability distribution functions in multifractal behav-
ior of keystroke time series. Our results characterize the
scaling behavior of keystroke data sets for aforementioned
subjects at different time scales.
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