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Abstract
Essential thrombocythemia (ET) is a classical myeloproliferative neoplasm that is susceptible to hypercoagulable state due 
to impaired hemostatic system, so that thrombotic complications are the leading cause of mortality in ET patients. The 
content used in this article has been obtained by the PubMed database and Google Scholar search engine from English-
language articles (2000–2019) using the following keywords: "Essential thrombocythemia," "Thrombosis," "Risk factors" 
and "Hemostasis. In this neoplasm, the count and activity of cells such as platelets, leukocytes, endothelial cells, as well as 
erythrocytes are increased, which can increase the risk of thrombosis through rising intercellular interactions, expression 
of surface markers, and stimulation of platelet aggregation. In addition to these factors, genetic polymorphisms in hemat-
opoietic stem cells (HSCs), including mutations in JAK2, CALR, MPL, or genetic abnormalities in other genes associated 
with the hemostatic system may be associated with increased risk of thrombotic events. Moreover, disruption of coagulant 
factors can pave the way for thrombogeneration. Therefore, the identification of markers related to cell activation, genetic 
abnormalities, or alternation in the coagulant system can be used together as diagnostic and prognostic markers for the 
occurrence of thrombosis among ET patients. Thus, because thrombotic complications are the main factors of mortality in 
ET patients, a hemostatic viewpoint and risk assessment of cellular, genetic, and coagulation factors can have prognostic 
value and contribute to the choice of effective treatment and prevention of thrombosis.
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Introduction

Essential thrombocythemia (ET) is an acquired myelo-
proliferative neoplasm (BCR-ABL−) characterized by an 
increase in peripheral blood platelet counts (> 450 G/L) 
as well as rising megakaryocytes in bone marrow (BM) 
[1]. Although the risk of fibrotic/leukemic transforma-
tion in ET patients is < 1%, the incidence of thrombohe-
morrhagic events in them has been estimated at approxi-
mately 11–39% [2]. Hemostatic abnormalities in these 
patients often occur as thrombotic events (as opposed to 
hemorrhage), which are caused by various factors such 
as increasing counts and function of different cells (i.e. 
platelets, leukocytes, endothelial cells and erythrocytes), 
the presence of genetic risk factors including JAK2 V617F 
mutation (as the most frequent genetic aberration), CALR 
and MPL mutation, or the increase in coagulant mark-
ers (Fig. 1) [3]. Nevertheless, age above 60 years and a 
history of thrombotic events are known as standard risk 
factors for thrombosis in these patients [4]. Although life 
expectancy may not be reduced in ET patients, thrombotic 
complications are the foremost cause of mortality in them 

[4]. Identifying the predictors as well as the mechanism 
of thrombotic events in low-risk ET patients is of high 
value because they are prone to severe thrombotic attacks 
in the future [5]. The mechanism of thrombosis patho-
genesis in ET patients is not fully understood. However, 
clinical symptoms (such as vascular/arterial thrombosis 
and erythromelalgia), laboratory indicators including 
increasing levels of coagulant markers such as factor VII, 
VIII, tissue factor [TF], plasminogen activator inhibitor-1 
[PAI-1], and genetic analysis can detect thrombosis risk 
factors [6, 7]. Cellular analysis in ET patients suggests 
that cell activation and interaction between cells can play 
an essential role in stimulating platelet aggregation and 
enhancing thrombosis. Therefore, the evaluation of cell 
counts and markers associated with cell activation could 
be considered as a prognostic marker for the occurrence of 
thrombotic episodes [8]. Besides, genetic studies suggest 
that the presence of genetic abnormalities such as JAK2 
V617F mutation, which is present in nearly 60–65% of 
ET patients, can augment the procoagulant state in these 
patients through increasing cellular activity and stimula-
tion of coagulant factors [9]. Hence, genetic evaluation 
can have diagnostic and prognostic value in ET patients 

Fig. 1   Cellular, genetic, and coagulation aspects of thrombogenic risk 
factors in ET. Cellular aspects: Various cells, including leukocytes, 
platelets, endothelial cells, and erythrocytes, can stimulate thrombotic 
events by altering the morphology, number, secretion of granules sub-
stances, and activating markers. Evaluation of each of these cellular 
factors may be useful in predicting and detecting early thrombotic 
attacks in patients. Genetic factors: Genetic abnormalities in patients 
can lead to excessive proliferation of cells or stimulate the coagula-
tion state. Some of these genetic abnormalities inhibit the fibrinoly-

sis system (such as PAI-1 polymorphisms), and others (such as Pro 
G20210) enhance the production of thrombin. Genetic evaluation in 
ET patients can be a prognostic marker for thrombotic attacks and 
have a high diagnostic value. Coagulant markers: Increased coagu-
lation factors, elevated thrombomodulin resistance, and decreased 
fibrin sensitivity to plasmin can all provide conditions for stimulat-
ing thrombotic events in ET patients. Therefore, the measurement of 
coagulation factors, along with the risk of cellular and genetic factors, 
has a high prognostic value
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and increase the likelihood of thrombosis. In addition to 
the mentioned issues, plasma levels of coagulant factors 
(that are higher in ET patients with thrombosis than in 
controls) are affected by both cellular activity and genetic 
polymorphisms [10]. Given that the prevention of throm-
botic episodes is the primary goal of treatment for ET 
patients, in this paper, we investigate a hemostatic view-
point to investigate cellular, genetic and coagulation risk 
factors to identify valuable diagnostic and prognostic 
markers involved in the selection of practical therapeutic 
and prognostic approach and improvement of patients.

Cellular aspects of thrombosis in ET patients

Neutrophils

Studies have shown that alterations in the number and 
function of crucial cells like leukocytes, platelets, endothe-
lial cells, as well as erythrocytes may play a role in the 
pathogenesis of thrombotic complications in patients 
with ET (Table 1). These patients have high blood viscos-
ity due to leukocytosis, thrombocytosis, or erythrocyto-
sis, which is associated with myeloid hyperplasia of bone 
marrow [11]. The hyperplasia is partly caused by JAK2 
V617F mutation (or an equivalent somatic mutation) that 
not only increases cell lineage but leads to functional 
changes in cells [11, 12]. Relative to the increase in other 

lineages (e.g., erythrocytosis), leukocytosis appears to be 
more related to vascular complications [13]. Therefore, 
researchers are paying particular attention to the number 
and function of polymorphonuclear leukocytes (PMNs) in 
ET patients. Research has revealed that high WBC counts 
(> 11 × 109/L) could be considered as a thrombotic risk fac-
tor in these patients with poor prognosis [13]. Furthermore, 
WBCs counts > 15 × 109/L are predictive of arterial/vas-
cular thrombosis in ET patients [11]. Leukocytosis-related 
thrombotic events can be due to the changing function of 
activated neutrophils. For example, activated neutrophils 
can affect the hemostatic system through reactive oxygen 
species (ROS), the release of intra-granule proteases, or 
interactions with vascular cells (or platelets, monocytes, 
and endothelial cells) [14]. ROS, such as nitric oxide (NO), 
can detect hemostatic components in the blood, including 
inactive fibrinogen, factor V, factor VII, von willebrand fac-
tor (VWF), factor X, plasmin activator inhibitor-1 (PAI-1), 
and α2-antiplasmin [15]. Moreover, in vitro studies incubat-
ing activated neutrophils with endothelial cells in culture 
medium have revealed that ROS facilitates the release of 
VWF and thrombomodulin from endothelial cells, which 
can be considered as a thrombogenic agent [14]. On the 
other hand, activated neutrophils are capable of secreting 
intracellular proteases, which can transform the phenotype 
of platelets and endothelial cells into a procoagulant state 
and enhance the risk of thrombosis [16]. The most effec-
tive neutrophil enzymes are elastase and cathepsin G. These 

Table 1   The most Important thrombotic risk factors associated with cell activation

WBCs white blood cells, ROS reactive oxygen species, MPV mean platelet volume, TXA2 thromboxane-A2, ADP adenosine diphosphate, 
sCD40L soluble- CD40 ligand, MPs microparticles, vWF von Willebrand factor, ECs endothelial cells, TM thrombomodulin, PAI-1 plasmino-
gen- activator inhibitor, TG thrombin generation

Cells Activation markers Thrombotic activity References

Leucocytes High WBCs count (> 11 × 109/L) Stimulation of platelet aggregation [13–15]
Increases ROS Facilitate release of vwf from Ecs [17]
Increased cathepsin G and elastase Inhibit coagulant inhibitors, TM and increase PAI-1 secretion
Increased expression of CD11b/ CD18 Stimulate super oxide anions synthesis and thrombin formation [18]
Increased expression of CD11b/CD62P Increased platelet degranulation and procoagulant state [29]

Platelets Increased MPV and decreased density Dilation of the dense tubular/open canalicular system [10]
Increased urinary TXA2 Increased arachidonic acid metabolism and platelet aggregation [31]
Increased microparticles Increased levels of aminophospholipids and thrombogenesis [37–39]
Increased platelet sensitivity to ADP Stimulation of the platelet aggregation and TG
Increased expression of selectin P-selectin Increased platelet activity and thrombin growth [42–44]
Increased levels of sCD40L Stimulation of agonist-induced platelet and aggregation
Decreased pro-apoptotic mediators (BAX) Increased megakaryocytic and platelet populations [46–51]

Ecs, RBCs Increased levels of endothelial-derived MPs Increased level of coagulability and TG [52]
Increased mature vWF Strengthen the coagulation and aggregation process
Increased expression of CD62-E Increased platelet adhesion and aggregation [54–57]
Increased expression of CD62E/CD41 Induction of morphological changes in platelets and aggregation [59]
Increased rouleax formation Stimulation of platelet aggregation [60]
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enzymes prevent thrombomodulin activation and stimulate 
PAI-1 release by inhibiting thrombin-induced prostacyclin 
production, thereby increasing the risk of hypercoagulabil-
ity thrombosis [14]. Notably, cathepsin G is a degranulating 
agent and platelet agonist increasing the expression level of 
glycoproteins (such as platelet receptor PAR4) on platelets 
for binding to neutrophils, which can contribute to effec-
tive aggregation and rising risk of thrombosis [17]. The 
coagulant activity of neutrophil elastase may be due to the 
inhibition of several coagulant inhibitors, including protein 
C, protein S, antithrombin, heparin factor II, or tissue factor 
pathway inhibitor (TFPI), which is associated with increas-
ing thrombosis [14, 18]. Neutrophils enhance the expression 
of adhesive molecules such as CD11b to protect proteases by 
creating a close microenvironment to prevent the effects of 
proteinase inhibitors [19]. Neutrophil gelatinase-associated 
lipocalin (NGAL) is a member of the lipocalin family that 
plays a role in the transport of lipophilic substances and 
the synthesis of prostaglandins in neutrophils [20]. As an 
acute-phase protein, NGAL level is elevated in a variety 
of conditions, including appendicitis, urinary tract infec-
tion, or bowel diseases [21, 22]. The prognostic value of 
NGAL is also significant in malignancies, such as breast 
cancer and ovarian cancer [23, 24]. Research has shown 
that NGAL serum levels are significantly increased in ET 
patients, which may reflect increasing neutrophil counts in 
these patients because NGAL is produced by neutrophils 
[25]. Thus, it may be argued that the approaches leading to 
the inhibition of the production and function of NGAL could 
be useful in the treatment of ET patients.

The adhesion of neutrophils to other blood cells, which 
can trigger procoagulant reactions, is an important issue that 
has been the subject of most studies. For instance, neutro-
phils bind p-selectin on the surface of platelets via p-selectin 
glycoprotein ligand-1 (PSGL-1) [26]. Subsequent adhesion 
is mediated by CD11b/CD18 binding to platelet glycoprotein 
(or fibrinogen bound to platelet GPIIb/IIIa), resulting in the 
formation of neutrophil/platelet mix aggregates and super-
oxide anions [14]. According to investigations, these mix 
aggregates and superoxide anions are effective in the patho-
genesis of thrombotic events in patients with ET. Therefore, 
measurement of sensitive markers of platelet activation such 
as neutrophil/platelet mix aggregates by a cytofluorimetric 
method in whole blood can have prognostic and diagnostic 
value in these patients [27, 28]. As an example, increasing 
expression of CD11b (neutrophil marker), CD62p (platelet 
marker), or CD11b/CD62P + (a marker of neutrophil/platelet 
mix aggregates) can be used by cytofluorimetric analysis 
for prognostic and diagnostic purposes [29]. Other studies 
show that neutrophil activation parameters such as CD11b, 
leukocyte alkaline phosphatase (LAP), as well as plasma 
parameters like plasma elastase and myeloperoxidase (MPO) 
are significantly higher in ET patients than in controls [14, 

30, 31], suggesting that the activation and degranulation of 
neutrophils may be implicated in the pathogenesis of throm-
bosis in such patients. Interestingly, according to analyses, 
plasma levels of MPO and elastase were still higher in ET 
patients than in the control group even after normalizing the 
WBC count [30]. Consequently, the level of plasma markers 
(including MPO and elastase) may depend on the activity 
of the leukocytes, not just their counts [4, 30]. Aspirin can 
decrease mixed aggregates and thrombotic risks by reducing 
CD11b expression and neutrophil activity [32]. Accordingly, 
thrombotic complications can be altered over time through 
various cell-dependent factors; therefore, the evaluation 
of blood parameters could have a prognostic value in ET 
patients as well as in other malignancies (such as leuke-
mia, infection, etc.) [33–35]. While the calculated cutoffs 
for WBCs are considered equal to 8.48 G/L (above which 
the risk of thrombosis increases), it is not clear what thresh-
old of WBCs counts is satisfactory as a treatment endpoint 
for patients [5]. Cytoreductive therapy, including the use 
of hydroxyurea (HU) to decrease blood cells (especially 
WBCs), can diminish the risk of vascular thrombotic dis-
ease in high-risk ET patients [8]. Thus, leukocytosis, along 
with functional and morphologic abnormalities, can be a 
crucial risk factor for thrombotic events in ET patients, and 
an efficient therapeutic strategy should be considered fol-
lowing possible defects.

Platelets

Along with the previously mentioned changes in neutrophils, 
some platelet defects like atypical morphology, membrane 
abnormalities, acquired storage pool diseases, and abnor-
mal arachidonic acid metabolism has been detected in ET 
patients as well as rising platelet counts [36]. Using auto-
mated and ultrastructural analyses, platelet abnormalities 
such as increased mean platelet volume (MPV), decreased 
buoyant platelet density, or increased heterogeneity have 
been observed in ET patients [37]. These findings are due 
to platelet proliferation or dilation of the dense tubular/open 
canalicular system. As a result, automated parameters such 
as MPV and decreasing density reduction may be indicative 
of increased platelet activity associated with poor prognosis 
in patients [37–39]. Increased urinary excretion of throm-
boxane A2 (TX A2), which indicates platelet activation, is 
also valuable in vivo finding that can be used as a prog-
nostic marker for the occurrence of thrombotic episodes 
in ET patients [31]. Hemostatically, activation of platelets 
in ET patients is caused by the exposure of phospholipids 
present on the surface of platelets to tenase and prothrom-
binase complexes. Activated platelets can express anionic 
phospholipids and TF on their surface, thereby providing 
the conditions for stimulating the coagulation cascade [40, 
41]. Concomitant with platelets activation, the tissue factor 
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(TF) level increases and stimulates the coagulation process. 
Following platelet activation or cell injury, various cells 
like platelets, erythrocytes, or leukocytes (mainly platelets) 
can release microparticles (0.1–1 μm in diameter) into the 
bloodstream [10]. There are aminophospholipids on the sur-
face of these microparticles that are capable of initiating 
the thrombotic process. Studies indicate the higher number 
of these microparticles in ET patients relative to controls 
[42]. Consequently, microparticles can be considered as 
biomarkers reflecting the prothrombotic state that increases 
the chance of thrombosis [10]. On the other hand, surface 
markers of platelets can enhance platelet aggregation and 
thrombosis. ADP is a potent platelet agonist affecting three 
platelet receptors: P2Y1, P2Y12, and P2X1 [43]. Investiga-
tions indicate that platelets of ET patients (especially JAK2 
V617F positive patients) are more sensitive to ADP and fur-
ther stimulate platelet aggregation as well as thrombin gen-
eration [43]. ADP binding to the P2Y12 receptor increases 
the secretion of dense granules and α-granules, augmenting 
TF secretion, and p-selectin translocation to the platelet sur-
face that will eventually be associated with thrombus growth 
[44]. According to statistics, inhibition of P2Y12 receptor 
decreases TF-dependent factor Xa activity by 33% in healthy 
subjects taking clopidogrel (ADP antagonist) [45]. Targeting 
negatively charged phospholipids on the surface of activated 
platelets seems to be a promising prospect for antithrombotic 
therapies among ET patients. Thus, ADP receptor inhibitors 
(in addition to aspirin) can inhibit platelet function and pre-
vent thrombosis [43]. Alternatively, phagocytes are involved 
in the clearance of activated circulating platelets, which 
can prevent thrombotic complications. However, platelet 
phagocytosis depends on the expression of surface markers 
on activated platelets, including p-selectin [46]. Since the 
presence of JAK2 V617F mutation is related with increased 
leukocyte counts, it may be inferred that the presence of this 
mutation is effective in reducing the risk of thrombosis in ET 
patients via increasing clearance and phagocytosis of acti-
vated platelets [47]. In addition to the large size and increase 
in granules of platelets, research has shown that the soluble 
CD40-L (sCD40-L) level also increases on the surface of 
platelets [48]. sCD40-L can stimulate the activity, aggrega-
tion, and agonist-induced platelet activation through CD40-
dependent tumor necrosis receptor and mitogen-activated 
protein kinase signaling. Accordingly, sCD40-L could be 
a predictor for platelet activation and thrombosis following 
rising platelet counts [49]. The impairment of the apoptosis 
process in megakaryocytes is a crucial mechanism involved 
in increasing counts of platelets (as well as reticulated plate-
lets) in ET patients. Studies have indicated that decreas-
ing pro-apoptotic mediators (such as BAX activators) can 
increase the population of megakaryocytes in BM of these 
patients [50, 51]. Given that the calculated cutoffs for plate-
let counts are 574.5 G/L, the counts exceeding this threshold 

can be considered as a thrombotic risk factor [5]. For this 
reason, apoptosis inducer drugs (such as HU) are used at 
an appropriate dose to prevent thrombotic events leading to 
decreased platelet populations. HU may play a role in reduc-
ing thrombotic events in these patients by stimulating the 
apoptotic process and inhibiting platelet dysfunction [51]. 
Overall, elevated levels of activated platelet markers, platelet 
dysfunction, and impaired inhibition of the apoptotic process 
should all be taken into account as they may increase the risk 
of vascular thrombosis in ET patients.

Endothelial cells and erythrocytes

The stimulatory effect of endothelial cells on the hemostatic 
system is mainly due to the function of PMNs, granular con-
tent, and surface markers associated with endothelial cells. 
Research has indicated increasing levels of endothelial-
derived microparticles under various conditions, including 
venous thromboembolism [52]. Less than 5% of these micro-
particles are generated by the activity of endothelial cells, 
erythrocytes, and monocytes [53]. Endothelial activation 
plays a role in enhancing the thrombotic state and stimulat-
ing thrombin generation. An increase in mature VWF and 
higher expression of soluble E-selectin (CD62E) are impor-
tant markers for the identification of endothelial activation 
[52]. Although endothelial cells do not express CD62E 
at rest, soluble CD62E levels increase during endothelial 
activation [54]. Also, some investigations have shown that 
activated endothelial cells of ET patients express CD41 (a 
platelet marker) in addition to CD62E-positive microparti-
cles. However, CD41 is not generally detected on endothe-
lial cells [52, 55]. Hence, this double positivity (CD62E/
CD41) may have been caused by the interaction between 
activated platelets and endothelial cells. Elevated CD62E/
CD41-positive microparticles increase thrombin genera-
tion and raise the risk of thrombosis and coagulation activi-
ties, which is an important sign of enhanced platelet and 
endothelial cell activity [56, 57]. Besides, activated MPNs 
can invade and disrupt endothelial cells through agonists 
such as N-formyl-methionyl-leucyl-phenylalanine (fmlP), 
bacterial endotoxins, cytokines, as well as enzymes gener-
ated by their activity [30]. Elastase has the most significant 
role in cytolysis and damage to endothelial cells compared 
to other granular proteases [58]. Following this injury, more 
VWF and thrombomodulin are expressed on the surface of 
endothelial cells, thereby providing the conditions for the 
initiation of coagulant processes and thrombosis.

The interaction between activated platelets and erythro-
cytes has also been observed among ET patients in some 
investigations, which has been reported to cause changes in 
platelet morphology (including pseudopodia formation and 
extreme aggregation) that can affect the hemostatic system 
[59]. Furthermore, electron light microscopy scans have 
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shown evidence of platelet-erythrocyte interaction as well 
as rouleaux formation in ET patients, which may be effective 
in stimulating platelet aggregation and increasing the risk of 
thrombosis [59, 60].

Genetic view of thrombogenic risk factors 
in ET patients

Genetic risk factors can lead to cellular changes and may 
also be involved in the pathogenesis of thrombosis in ET 
patients (Table 2). Accordingly, JAK2 V617F mutation is 
one of the most basic genetic abnormalities in these patients, 
with a probable incidence of 60–65% [9]. Importantly, JAK2 
V617F mutation can also raise the venous thrombosis risk of 
unusual sites (e.g., cerebral and splanchnic veins) [61]. This 
mutation has an intrinsic effect on megakaryopoiesis biol-
ogy and platelet reactivity, increasing the count and func-
tion of platelets. For instance, the simultaneous presence of 
this mutation and thrombophilia causes a fivefold increase 
in the risk of thrombosis compared to patients lacking this 
mutation or thrombophilia [11, 62]. Based on investigations, 
JAK2 V617F mutation spontaneously generates endogenous 
erythroid colony (EEC) and causes CD177 (PRV-1) over-
expression on the surface of granulocytes and leukocytes, 
leading to higher spontaneous proliferation in megakaryo-
cytes [31]. Moreover, heterozygous/homozygous JAK2 
V617F mutations can increase the number and function of 
leukocytes, which is detectable by the rising score of LAP, 
CD11b, and CD177 (PRV-1) [31, 63]. On the other hand, 
overexpression of platelet-leukocyte aggregates and TF is 
directly associated with the presence of JAK2 V617F muta-
tion, which increases the risk of thrombotic complications 
in ET patients [64]. The use of JAK2 inhibitors because of 
failed HU treatment may play an essential role in control-
ling leukocyte activation as well as lowering the levels of 
TF and CD11b to minimize the risk of thrombosis in these 
patients [64].

CALR mutation is the next major genetic risk factor in ET 
patients. CALR is a chaperone-protected protein involved in 
differentiation, apoptosis, and cell proliferation [3]. Muta-
tion in exon 9 of CALR has been identified in 20–25% of ET 
patients, which is associated with a reduced risk of throm-
bosis compared to JAK2 V617F. Compared to JAK2 V617F 
mutation, the phenotype of CARL mutation is observed 
in younger men with lower WBC counts and Hb as well 
as higher platelet counts and larger BM megakaryocytes 
[65]. In terms of age and sex distribution, MPL mutation 
is similar to patients carrying JAK2 V617F mutation and 
is comparable to CALR+ patients concerning WBC counts 
[66]. MPL mutation occurs in nearly 5% of ET patients, so 
it is less prevalent than the two mentioned mutations [9]. It 
should be noted that the frequency of patients lacking these 
three mutations (triple-negative) has been estimated to be 
10–25%. Triple-negative patients should be considered in ET 
because they are also at risk of thrombosis [9, 67]. In addi-
tion to the mentioned mutations, several genetic abnormali-
ties have been identified concerning the hemostatic system 
that could be involved in thrombotic events. For example, 
polymorphisms in coagulation genes like factor V Leiden 
and prothrombin G20210 mutation have been reported in 
patients with MPNs (especially ET) [68]. The coexistence 
of JAK2 V617F and prothrombin G20210 in patients with 
Budd-Chiari syndrome (BCS) who later progressed to ET 
is known as a combination of thrombophilic risk factors 
with an approximate frequency of 28% [69]. In addition to 
diagnostic value, tracing the coexistence of these two muta-
tions has a prognostic role for progression to ET as well as 
thrombotic complications [68]. Alternatively, known poly-
morphisms in the promoter region of PAI-1 (plasminogen 
activator inhibitor-1) gene, including 4-guanosine (4G) and 
5-guanosine sequence (5G), may also contribute to increas-
ing thrombosis [70]. Both of these alleles (4G, 5G) have a 
binding site for activator of transcription. Studies show that 
the 5G allele has an additional binding site for repressors 
relative to the 4G allele, which reduces transcription rates 

Table 2   The impact of genetic abnormalities on the process of thrombosis in ET patients

4G 4-guanosine sequence, 5G 5-guanosine sequence, TF tissue factor, NOS3 nitric oxide synthase-3, NO nitric oxide, MTHF methylenetetrahy-
drofolate reductase, PAI-1 plasmin activator-inhibitor

Gene Gene variant/polymorphism Outcome References

JAK2 JAK2 V617F Increased leukocyte counts, platelets, and factor TF expression [11, 31, 61–64]
CALR CALR exon 9 Reduced risk of thrombosis and increased platelet count (compared to 

JAK2 V617F)
[3, 65]

Factor V Factor V leiden Increased factor V resistance and stimulation of thrombogenesis [68, 69]
Prothrombin Prothrombin G20210 Increased thrombin levels and procoagulant state [68, 69]
PAI-1 4G,5G More plasmin- activator Inhibition and increased thrombin formation [70, 71]
MTHF G77 C > T,1298 A > C Hyperhomocysteinemia and arterial/vascular thrombosis [11, 72]
NOS3 Glu298 ASP Reduced the protective effects of NO and increased platelet aggregation [73, 74]
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and, consequently, PAI-1 function [71]. Nevertheless, the 
4G allele increases the level of PAI-1 (compared to 5G), 
which is associated with the rising risk of thrombosis in 
patients [70]. Additionally, common mutations in the meth-
ylenetetrahydrofolate reductase gene (MTHF), including 
G77 C > T and 1298 A > C, are associated with decreasing 
MTHFR enzymatic activity, which may lead to hyperhomo-
cysteinemia and increased arterial/vascular thrombosis of 
ET patients [11, 72]. Another important genetic risk factor is 
the gene polymorphisms of nitric oxide synthase-3 (NOS3). 
The product of the NOS3 gene is NO, which is capable of 
inducing antithrombotic effects by reducing leukocyte adhe-
sion and platelet aggregation [73]. Researchers have shown 
that the Glu298 ASP variant of the NOS3 gene decreases the 
protective effects, increasing the risk of thrombosis in ET 
patients [73, 74]. Conversely, haplotypes of factor VII genes, 
including dekanucleotide polymorphism (-323P0/10), have 
a protective effect against thrombotic episodes by decreas-
ing factor VII level in plasms [75, 76]. As a result, genetic 
tests and detection of thrombophilia mutations could be a 
practical approach for assessing thrombosis risk as well as 
reducing thrombotic events in ET patients.

Coagulant markers as a trigger 
of thrombosis in ET patients

ET patients are exposed to hypercoagulant state due to the 
increase of plasma biomarkers associated with the hemo-
static system. According to investigations, increasing levels 
of several coagulant factors including factor VII, factor VIII, 
thrombin, prothrombin fragments (F1 and F2), protein S/C, 
VWF raise the risk of thrombosis in ET patients (Table 3) 
[1]. With a hemostatic view, impaired TM function and 
acquired TM resistance can be associated with decreased 
levels of free protein S, leading to enhanced procoagulant 
activity in ET patients [10]. Undoubtedly, the evaluation of 
TF activity is a good indicator to assess coagulation activity. 

According to studies on ET patients, TF activity is approxi-
mately 18-fold higher than the control group [7]. Coagu-
lant activity of TF is inhibited by TFPI, which is profusely 
secreted by vascular endothelium. TFPI activity has been 
observed to be lower in JAK2 V617F-negative ET patients 
relative to JAK2 V617F-positive ones [77]. Therefore, the 
presence of this mutation is likely to increase the risk of 
thrombosis by reducing TFPI activity [7]. Along with these 
factors, protein Z (pro Z), a vitamin K-dependent glycopro-
tein, may also be involved in the stimulation of thrombogen-
esis. One of the most critical functions of pro Z is to inhibit 
factor Xa and XIa [78]. Pro Z and z protein-inhibitor (ZPI) 
are found in the complex form in the circulation, in such 
a way that the concentration of one of them affects that of 
the other [79]. Research shows that pro Z and ZPI levels in 
JAK2 V617F + patients are much lower than those of JAK2 
V617F- patients. Decreased plasma levels of pro-Z are asso-
ciated with a higher risk of thrombosis and thrombotic state 
stimulation [78]. Furthermore, the activation of platelets and 
leukocytes causes damage to endothelial cells (an important 
source of pro Z), which again results in the decrease of pro 
Z plasma levels and an increase of thrombotic events [78]. 
On the other hand, unfavorable alternations to fibrin clot 
have been shown to decrease the sensitivity of fibrin to the 
fibrinolytic system, which consequently increases thrombo-
sis [1]. In ET patients, elevated levels of PAI-1, circulat-
ing PF4, platelet-specific protein (PF4, sPS), and impaired 
fibrinolysis lead to the formation of compact fibrin networks 
that are less sensitive to fibrinolysis and may increase the 
risk of thrombotic episodes [80]. Since anagrelide increases 
the risk of arterial thrombosis, hemorrhage, and BM fibrosis, 
it is preferable to use HU as a safe drug to reduce vascular 
thrombosis in ET patients [32, 81]. Nonetheless, the use of 
aspirin acetylates fibrinogen and improves fibrin function 
by enhancing the influence of the fibrinolysis system, which 
prevents thrombosis [82, 83]. Therefore, because thrombin 
formation is dependent upon the balance of the fibrinolytic/
procoagulant system, the level of coagulant factors should 

Table 3   Thrombogenic coagulant risk factors in ET patients

vWF von Willebrand factor, TFPI tissue factor pathway inhibitor, TM thrombomodulin, TG thrombin generation

Coagulant risk factor Plasma levels Thrombotic effects Ref

F VII
F VIII

Increased Increased thrombin production and hypercoagulant state [1, 75, 76]

Pro C
Pro S

Increased Increased level of FV, FVIII, and thrombin formation [1]

vWF Increased Stimulation of platelet adhesion and aggregation [1]
TFPI Decreased Stimulation of the extrinsic blood coagulation pathway and thrombogenesis [7, 77]
Pro Z Decreased Increased activity of factors Xa/XI and stimulation of TG [78]
Unfavorable fibrin clot Increased Decreased fibrin sensitivity to fibrinolysis and increased procoagulant state [1, 80]
Acquired TM resistance Increased Decreased free Protein S levels and stimulation of thrombin formation [10]
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always be evaluated in ET patients to reduce the risk of 
thrombosis in them.

Discussion

ET is a classical Philadelphia-negative MPN with a preva-
lence of 0.98–1.7 per 100,000 per year, and the first clinical 
manifestation of ET is thrombotic complications, usually 
at arterial, vascular, and microcirculating sites [1, 84]. The 
incidence of arterial thrombosis is higher than vascular 
thrombosis among ET patients, and splenic thrombosis is 
more lethal than other types [85]. Nearly 30–50% of ET 
patients (especially patients over 60 years of age) suffer 
from thrombotic complications, and vascular thrombosis 
accounts for 35–45% mortality of these patients [70]. In 
terms of thrombosis risk, ET patients are divided into three 
groups: low-risk (0–1score), intermediate-risk (2 scores) and 
high-risk (> 3 scores) [86]. The main thrombotic risk fac-
tors of ET patients are age over 60 (1 score), cardiovascular 
risk factors (1 score), previous thrombosis (2 scores), and 
presence of JAK2 V617F mutation (2 scores) [86]. Con-
ventional thrombotic risk stratification distinguishes ET 
patients in two risk-groups: A low-risk group includes ET 
patients younger than 60 years without a history of throm-
bosis, whereas high-risk group includes ET patients older 
than 60 years with a history of thrombosis [87]. The Inter-
national Working Group for MPN Research and Treatment 
(IWG-MRT) released the prognostic scores to categorizes 
ET patients in three thrombotic risk groups (low, interme-
diate, and high-risk groups) based on four risk variables 
(including age > 60 years, thrombosis history, JAK2 V617F 
presence, and cardiovascular risk factors), which is known 
as the International Prognostic Score of thrombosis for ET 
(IPSET-thrombosis) [88]. Recently, through the re-analysis 
of the original IPSET-thrombosis data set, a revised IPSET-
thrombosis (r-IPSET-t) was accomplished. In r-IPSET-t, 
three adverse variables (age > 60 years, thrombosis history, 
and JAK2 V617F presence) are used to designate four risk 
categories (very low, low, intermediate, and High-risk cat-
egory) [89]. The most prominent benefit of the r-IPSET-t 
classification is the prediction of ET patients that require 
therapeutic intervention. Certainly, this prognostic classi-
fication can be useful for risk classification and preventing 
thrombotic attacks [90]. Other risk factors like hypertension, 
diabetes, hyperlipidemia, and smoking are also implicated 
in the induction of thrombosis in ET patients [4]. Although 
among these prognostic models, only the IPSET-thrombo-
sis system includes cardiovascular risk factors, the role of 
these risk factors in determining thrombotic events and risk 
stratification is valuable. Cardiovascular risk factors such 
as cigarette smoking, diabetes, hypertension, obesity, and 
dyslipidemia can increase the incidence of thrombotic events 

and having a significant impact on morbidity and survival of 
ET patients: therefore, should always be considered in the 
diagnostic and therapeutic process [87]. In addition to ET, 
primary myelofibrosis (PMF) and Polycythemia Vera (PV) 
are two other Philadelphia-negative MPN that propensity for 
thrombotic events. According to studies, the risk of throm-
bosis in both ET and PV patients exceeds 20%. The overall 
prevalence of thrombosis in PMF is almost the same as in 
ET, while it is significantly lower than in PV [91]. According 
to the WHO 2016, the most important common risk factors 
that affect the survival of patients with ET, PV, and PMF 
include advanced age, leukocytosis, and thrombosis. Other 
studies indicated that like ET, the presence of cardiovascular 
risk factors, including hypertension, smoking, diabetes, and 
dyslipidemia, are independent predictors of thrombosis in 
PMF [91]. On the other hand, a comparison of the role of 
thrombogenic mutations in ET, PV, and PMF reveals that 
the impact of JAK2 V617F is well known as a pro-throm-
botic factor in ET and PV. However, its role in the patho-
genesis of thrombosis in PMF still needs further research 
[92]. Although in ET and PMF, CALR-mutated patients are 
associated with higher platelet count, the presence of CALR 
mutation leads to decreased thrombotic events and lower 
incidence of leukocytosis [83, 85, 91].

Changes in the function and count of leukocytes, platelets, 
endothelial cells, or erythrocytes can increase procoagulant 
state in ET patients. Interaction among these cells, alteration 
in their granular content, or increase in phagocytosis play a 
vital role in boosting platelet aggregation, thrombin genera-
tion, or increasing coagulant factors. Assessment of markers 
related to the activity of each cell type can be considered as a 
prognostic marker [29, 36, 37]. Several genetic factors have 
also been identified to exacerbate the mentioned risk factors 
and enhance the risk of thrombosis in patients. Some muta-
tions (such as JAK2 V617F, CALR, and MPL) can occur 
at the level of hematopoietic stem cells and lead to clonal 
myeloproliferation, including overproliferation of mega-
karyocytes and platelets [93, 94]. In critical situations such 
as inflammation, the presence of inflammatory biomarkers 
like pentraxin 3 (PTX3) and high-sensitive C-reactive pro-
tein (hs-CRP) may be used as prognostic markers (along 
with genetic risk factors) for classification and probability 
determination of thrombosis in ET patients [40, 95]. For this 
reason, the use of inflammatory status reducers, including 
statins, along with JAK2 inhibitors, seems to be effective in 
preventing the progression of inflammation and thrombotic 
episodes [9]. Other polymorphisms (e.g., factor V Leiden, 
prothrombin G20210, PAI-1 polymorphisms, MTHF muta-
tions, etc.) can increase the level of coagulant factors and the 
likelihood of thrombotic events [11, 72]. Similar to cellular 
analysis, genetic assessment of these mutations has remark-
able diagnostic and prognostic value. In contrast, increasing 
levels of coagulant markers or impaired fibrinolytic system 
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can cause upregulation in the hemostatic system and raise 
the chance of thrombosis in ET patients [1]. Some patients 
with ET have no clinical symptoms upon diagnosis, so eval-
uating these patients from a cellular, genetic, and coagulant 
viewpoint may help control and treat the disease (Fig. 1) [7]. 
Low-dose aspirin (81–100 mg/day) alone or in combina-
tion with phlebotomy and HU (depending on the cause and 
severity of disease) is practically recommended for all ET 
patients [96]. Therefore, evaluation of cellular, genetic, and 
hemostatic markers can be of high prognostic value in ET 
patients and contribute to the selection of effective treatment 
and improvement of patients considering that hemostatic 
abnormalities are the most frequent problems in ET patients.
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