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Abstract. Necessary and sufficient conditions in terms of lower cut sets
are given for the strong insertion of a Baire-.5 function between two com-
parable real-valued functions on the topological spaces that F,,—kernel of
sets are F,—sets.
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1 Introduction

A generalized class of closed sets was considered by Maki in 1986 [18]. He investigated
the sets that can be represented as union of closed sets and called them V —sets.
Complements of V —sets, i.e., sets that are intersection of open sets are called A—sets
[18].

Recall that a real-valued function f defined on a topological space X is called
A—continuous [25] if the preimage of every open subset of R belongs to A, where A
is a collection of subsets of X. Most of the definitions of function used throughout
this paper are consequences of the definition of A—continuity. However, for unknown
concepts the reader may refer to [5, 11]. In the recent literature many topologists had
focused their research in the direction of investigating different types of generalized
continuity.

J. Dontchev in [6] introduced a new class of mappings called contra-continuity.
A considerable number of researchers have also initiated different types of contra-
continuous like mappings in the papers [1, 4, 8, 9, 10, 12, 13, 23].

The results of Katétov [14, 15] concerning binary relations and the concept of an
indefinite lower cut set for a real-valued function, which is due to Brooks [3], are used
in order to give a necessary and sufficient condition for the insertion of a Baire-.5
function between two comparable real-valued functions on the topological spaces that
F,—kernel of sets are F,,—sets.

A real-valued function f defined on a topological space X is called contra-Baire-1
(Baire-.5) if the preimage of every open subset of R is a Gs—set in X [26].
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If g and f are real-valued functions defined on a space X, we write g < f in case
g(xz) < f(zx) for all x in X.

The following definitions are modifications of the conditions considered in [16].

A property P defined relative to a real-valued function on a topological space is
a B — .5—property provided that any constant function has property P and provided
that the sum of a function with property P and any Baire-.5 function also has prop-
erty P. If P, and P, are B — .5—properties, the following terminology is used: (i)
A space X has the weak B — .5—insertion property for (Py, Py) if and only if for any
functions g and f on X such that g < f,g has property P, and f has property P,
then there exists a Baire-.5 function h such that g < h < f. (ii) A space X has the
strong B — .5—insertion property for (P1, P2) if and only if for any functions g and f
on X such that g < f, g has property P, and f has property P», then there exists a
Baire-.5 function h such that g < h < f and such that if g(z) < f(x) for any x in X,
then g(z) < h(z) < f(x).

In this paper, for a topological space that F,—kernel of sets are F,—sets, is given
a sufficient condition for the weak B — .5—insertion property. Also, for a space with
the weak B —.5—insertion property, we give necessary and sufficient conditions for the
space to have the strong B — .5—insertion property. Several insertion theorems are
obtained as corollaries of these results. In addition, the strong insertion of a contra-
continuous function between two comparable real-valued functions has also recently
considered by the authors in [21].

2 The Main Result

Before giving a sufficient condition for insertability of a Baire-.5 function, the neces-
sary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X,7). We define the
subsets A* and AV, as follows:
AM=n{0:0DA,0¢c (X,m)}and AV =U{F: FC A F°c (X,7)}.
In [7, 19, 22], A® is called the kernel of A.
We also define the subsets G5(A) and F,(A), as follows:
Gs5(A) =U{0: 0 C A,0isGs — set} and
F,(A)=n{F: F 2 A, FisF, — set}.

F,(A) is called the F, — kernel of A.

The following first two definitions are modifications of conditions considered in
(14, 15].

Definition 2.2. If p is a binary relation in a set S then p is defined as follows: = p y
if and only if y p v implies « p v and u p x implies u p y for any v and v in S.

Definition 2.3. A binary relation p in the power set P(X) of a topological space
X is called a strong binary relation in P(X) in case p satisfies each of the following
conditions:
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1) If A; p B for any i € {1,...,m} and for any j € {1,...,n}, then there exists
a set C' in P(X) such that A; p C and C p B; for any i € {1,...,m} and any
je{l,...,n}.

2)If AC B, then A p B.

3) If A p B, then F;(A) C B and A C G5(B).
The concept of a lower indefinite cut set for a real-valued function was defined by
Brooks [3] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if {x € X :
flx) <€} CA(f,0) C{x e X : f(x) </} for a real number ¢, then A(f,¢) is a lower
indefinite cut set in the domain of f at the level £.

We now give the following main results:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, that
F,—kernel sets in X are F,—sets, with g < f. If there exists a strong binary relation
p on the power set of X and if there exist lower indefinite cut sets A(f,¢) and A(g,t)
in the domain of f and g at the level ¢ for each rational number ¢ such that if t; < to
then A(f,t1) p A(g,t2), then there exists a Baire-.5 function h defined on X such
that g < h < f.

Proof. Let g and f be real-valued functions defined on the X such that ¢ < f. By
hypothesis, there exists a strong binary relation p on the power set of X and there
exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level
t for each rational number ¢ such that if ¢; <t then A(f, 1) p A(g, t2).

Define the functions F' and G mapping the rational numbers QQ into the power set of
X by F(t) = A(f,t) and G(t) = A(g,t). Ift; and t9 are any elements of Q with t; < ¢,
then F(t1) p F(t2),G(t1) p G(t2), and F(t1) p G(t2). By Lemmas 1 and 2 of [15], it
follows that there exists a function H mapping Q into the power set of X such that
if t; and t5 are any rational numbers with ¢; < to, then F(t1) p H(t2), H(t1) p H(t2)
and H(tl) 14 G(tg)

For any z in X, let h(z) =inf{t € Q:x € H(t)}.

We first verify that ¢ < h < f: If z is in H(¢) then z is in G(t') for any ¢’ > ¢;
since = in G(t') = A(g,t') implies that g(z) < ¢/, it follows that g(x) < t. Hence
g < h. If x is not in H(¢), then z is not in F(t’) for any ¢’ < ¢; since x is not in
F(t') = A(f,t') implies that f(x) > t', it follows that f(z) > t. Hence h < f.

Also, for any rational numbers ¢; and ty with t; < t3, we have h=1(t1,t2) =

Gs(H(t2))\ Fy(H(t1)). Hence h=1(t1,ts) is a Gs—set in X, i.e., h is a Baire-.5 func-
tion on X. (]
The above proof used the technique of Theorem 1 of [14].
If a space has the strong B — .5-insertion property for (Py, P,), then it has the weak
B — .5-insertion property for (P;, P»).The following result uses lower cut sets and gives
a necessary and sufficient condition for a space satisfies that weak B — .5-insertion
property to satisfy the strong B — .5-insertion property.

Theorem 2.2. Let P; and P, be B—.5—property and X be a space that satisfies the
weak B — .5—insertion property for (P, Py). Also assume that g and f are functions
on X such that g < f, g has property P, and f has property P». The space X has
the strong B — .5—insertion property for (P, P,) if and only if there exist lower cut
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sets A(f — 9,27 ") and there exists a sequence {F,} of subsets of X such that (i)
for each n, F,, and A(f — ¢,27") are completely separated by Baire-.5 functions, and
(i){z € X : (f —g)(z) > 0} = UpZy Fan-

Proof. Suppose that there is a sequence (A(f — g,27™)) of lower cut sets for f — g
and suppose that there is a sequence (F},) of subsets of X such that

{reX:(f-g)x)>0} =] Fn

n=1

and such that for each n, there exists a Baire-.5 function k,, on X into [0,27"] with
kn=2""on F, and k, = 0 on A(f — ¢,27"). The function k from X into [0,1/4]
which is defined by

k() =1/4)  kn(z)

is a Baire-.5 function by the Cauchy condition and the properties of Baire-.5 functions,
(1) K71(0) = {r € X : (f—g)(x) = 0} and (2) f (7—g)(x) > O then k() < (f—g)(a)
In order to verify (1), observe that if (f — g)(z) =0, then x € A(f — g,27") for each
n and hence k, () = 0 for each n. Thus k(z) = 0. Conversely, if (f — g)(z) > 0, then
there exists an n such that € F,, and hence k,(z) = 27". Thus k(z) # 0 and this
verifies (1). Next, in order to establish (2), note that

{reX:(f-g( ﬂfg,"

and that (A(f — ¢,27")) is a decreasing sequence. Thus if (f — g)(z) > 0 then
either x & A(f — g,1/2) or there exists a smallest n such that « &€ A(f —¢,27") and
reA(f—g,27 ) forj=1,...,n—1.

In the former case,

k() = 1/4 ka(2) < 1/43°27" < 1/2 < (f - g)(a),

n=1

and in the latter,

B = 143 k(@) <143 279 <27 < (f — g)(a).
i=n j=n
Thus 0 < k < f—g and if (f — g)(z) > 0 then (f — g)(z) > k(x) > 0. Let
91 =9+ (1/4)k and f1 = f — (1/4)k. Then g < g1 < f1 < f and if g(x) < f(z) then

9(z) < gi(x) < fr(z) < f(2).

Since P, and P, are B — .5—properties, then g; has property P; and f; has property
P5. Since by hypothesis X has the weak B —.5—insertion property for (P;, P») , then
there exists a Baire-.5 function h such that g7 < h < f;. Thus ¢ < h < f and if
g(x) < f(z) then g(z) < h(z) < f(z). Therefore X has the strong B — .5—insertion
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property for (Py, P2). (The technique of this proof is by Lane [16].)

Conversely, assume that X satisfies the strong B — .5—insertion for (P;, P»). Let
g and f be functions on X satisfying P, and P; respectively such that g < f. Thus
there exists a Baire-.5 function i such that g < h < f and such that if g(z) < f(x)
for any z in X, then g(z) < h(z) < f(x). We follow an idea contained in Powderly
[24]. Now consider the functions 0 and f — h.0 satisfies property Py and f — h satisfies
property P». Thus there exists a Baire-.5 function h; such that 0 < hy < f — h and
if 0 < (f —h)(x) for any z in X, then 0 < hy(z) < (f — h)(x). We next show that

{reX:(f-g)(zx)>0}={x e X:hi(z) >0}

If z is such that (f — g)(x) > 0, then g(z) < f(z). Therefore g(z) < h(z) < f(z).
Thus f(z) — h(x) > 0 or (f — h)(z) > 0. Hence hy(z) > 0. On the other hand, if
hi(x) > 0, then since (f —h) > hy and f — g > f — h, therefore (f — g)(x) > 0. For
each n, let

Af—g2 ) ={zeX:(f-g)@) <27}, Fu={reX:m()=2"")

and

kn = sup{inf{h;,27 "1} 27"} — 27"
Since {x € X : (f —g)(z) > 0} = {x € X : hy(x) > 0}, it follows that

oo
fzeX:(f-g)@)>0} =] Fu

n=1
We next show that k, is a Baire-.5 function which completely separates F;, and
A(f — ¢,27™). From its definition and by the properties of Baire-.5 functions, it
is clear that k, is a Baire-.5 function. Let = € F,,. Then, from the definition of
kn,kn(x) =2"" Itz € A(f —¢,27™), then since hy < f—h < f—g,hi(z) <27™
Thus k,(z) = 0, according to the definition of k,,. Hence k,, completely separates F,
and A(f —g,27"™). O

Theorem 2.3. Let P; and P> be B — .5—properties and assume that the space X
satisfied the weak B — .5—insertion property for (P;, P»). The space X satisfies the
strong B — .5—insertion property for (Pp, P2) if and only if X satisfies the strong
B — .5—insertion property for (P;, B —.5) and for (B — .5, P,).

Proof. Assume that X satisfies the strong B — .5—insertion property for (P, B —.5)
and for (B — .5, P,). If g and f are functions on X such that g < f, g satisfies prop-
erty Pp, and f satisfies property P», then since X satisfies the weak B — .5—insertion
property for (Pp, P2) there is a Baire-.5 function k such that ¢ < k < f. Also, by
hypothesis there exist Baire-.5 functions h; and hs such that ¢ < hy < k and if
g(x) < k(x) then g(x) < hi(z) < k(z) and such that k < hy < f and if k(z) < f(x)
then k(z) < ho(x) < f(z). If a function h is defined by h(z) = (he(x) + hi(2))/2,
then h is a Baire-.5 function, g < h < f, and if g(x) < f(z) then g(x) < h(z) < f(x).
Hence X satisfies the strong B — .5—insertion property for (P;, P2). The converse
is obvious since any Baire-.5 function must satisfy both properties P; and P,. (The
technique of this proof is by Lane [17].) O
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3 Applications

Definition 3.1. A real-valued function f defined on a space X is called contra-upper
semi-Baire-.5 (resp. contra-lower semi-Baire-.5) if f~(—o0,t) (resp. f~1(t,+00)) is
a Gs—set for any real number t.

The abbreviations usc, lsc,cusB.5 and clsB.5 are used for upper semicontinuous,
lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, re-
spectively.

Remark 1. [14, 15]. A space X has the weak c—insertion property for (usc,lsc) if
and only if X is normal.

Before stating the consequences of theorem 2.1, 2.2 and 2.3 we suppose that X is
a topological space that F,—kernel of sets are F,—sets.

Corollary 3.1. For each pair of disjoint F,—sets Fi, F5, there are two Gg—sets G
and G such that F; C Gy, F» C Go and G1 NGy = & if and only if X has the weak
B — .5—insertion property for (cusB — .5,clsB — .5).

Proof. Let g and f be real-valued functions defined on the X, such that f is [sBy,g is
usBy, and g < f.If a binary relation p is defined by A p B in case F,(A) C Gs(B),
then by hypothesis p is a strong binary relation in the power set of X. If ¢; and ¢,
are any elements of Q with ¢; < t5, then

A(f,t1) C{r e Xt f(z) <t1} C{z € X : g(z) < ta} C A(g, t2);

since {x € X : f(z) <t1}isa F,—set and since {x € X : g(x) < t2} is a Gs—set, it fol-
lows that F,(A(f,t1)) C Gs(A(g,t2)). Hence t1 < to implies that A(f,¢1) p A(g, t2).
The proof follows from Theorem 2. 1.

On the other hand, let F7 and F5 are disjoint F,,—sets. Set f = xrc and g = X ,,
then f is clsB — .5,¢ is cusB — .5, and g < f. Thus there exists Baire-.5 function h
such that g < h < f. Set G1 = {zx € X : h(z) < 1} and Go = {z € X : h(z) > i},
then 7 and G are disjoint Gg—sets such that F; C Gy and Fy C Gs. O
Remark 2. [27]. A space X has the weak c—insertion property for (Isc, usc) if and
only if X is extremally disconnected.

Corollary 3.2. For every G of Gs—set, F,(G) is a Gs—set if and only if X has the
weak B — .5—insertion property for (clsB — .5, cusB — .5).
Before giving the proof of this corollary, the necessary lemma is stated.

Lemma 3.1. The following conditions on the space X are equivalent:
(i) For every G of Gs—set we have F,,(G) is a Gs—set.
(ii) For each pair of disjoint Gs—sets as G and Gy we have F, (G1)NF,(G2) = & .
The proof of Lemma 3.1 is a direct consequence of the definition F,,—kernel of
sets.
We now give the proof of Corollary 3.2.
Proof. Let g and f be real-valued functions defined on the X, such that f is clsB—.5, g
is cusB — .5, and f < ¢.If a binary relation p is defined by A p B in case F,(A) C
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G C F,(G) C G§(B) for some Gs—set g in X, then by hypothesis and Lemma 3.1 p
is a strong binary relation in the power set of X. If ¢; and ¢y are any elements of Q
with t; < to, then

Alg,t1)) ={x e X :g(x) <t1} C{z e X : f(x) <ta};

since {z € X : g(x) < t1} is a Gs—set and since {zx € X : f(x) <t} is a F,—set, by
hypothesis it follows that A(g,t1) p A(f,t2). The proof follows from Theorem 2.1.
On the other hand, Let i1 and G3 are disjoint Gs—sets. Set f = xg, and g = xgs,
then f is clsB — .5,g is cusB — .5, and f < g.
Thus there exists Baire-.5 function h such that f < h < g. Set F} = {z € X :
h(z) < £} and F» = {2z € X : h(z) > 2/3} then F; and F} are disjoint F,,—sets such
that G; C Fy and Gy C Fy. Hence F,(Fy) N F,(Fy) = & . a

Before stating the consequences of Theorem 2.2, we state and prove the necessary
lemmas.

Lemma 3.2. The following conditions on the space X are equivalent:

(i) Every two disjoint F,,—sets of X can be separated by Gs—sets of X.

(ii) If F is a F,—set of X which is contained in a Gs—set G, then there exists a
Gs—set H such that FC H C F,(H) CG.
Proof. (i) = (ii) Suppose that F' C G, where F and G are F,—set and Gs—set of X,
respectively. Hence, G¢is a F,—set and FNG® = & .

By (i) there exists two disjoint Gs—sets G1, G2 such that FF C Gy and G° C Gs.
But

G°C Gy = G5 CG,

and
GiNGy = =G, CGS

hence
FCG CG5CG

and since G§ is a F,—set containing G; we conclude that F,(G1) C GS, i.e.,
FCGCF(G1) CG.

By setting H = G, condition (ii) holds.

(ii) = (i) Suppose that Fy, Fy are two disjoint F,—sets of X.

This implies that Fy C Fy and F¥ is a Gs—set. Hence by (ii) there exists a Gs—set
H such that, s CH C F,(H) C F3§.
But

H C F,(H) = HN (F,(H))* = &
and
F,(H) C Fy = F», C (F,(H))".

Furthermore, (F,(H))® is a Gs—set of X. Hence Fy C H,Fy, C (F,(H))¢ and

HnN(F,(H))¢ =& . This means that condition (i) holds. O
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Lemma 3.3. Suppose that X is the topological space such that we can separate
every two disjoint F,—sets by Gs—sets. If F} and F5 are two disjoint F,—sets of
X, then there exists a Baire-.5 function h : X — [0,1] such that h(Fy) = {0} and
h(Fz) = {1}.

Proof. Suppose F, and F, are two disjoint F,,—sets of X. Since F; N F, = ¢, hence
Fy C F§. In particular, since Fy is a Gs—set of X containing Fj, by Lemma 3.2,
there exists a Gs—set Hj /5 such that,

Fy C Hyyp C Fy(Hyyp) C Fy.

Note that Hj,p is a Gs—set and contains Fp, and F§ is a Gs—set and contains
Fy(H,/2). Hence, by Lemma 3.2, there exists Gs—sets H; /4 and Hg,4 such that,

Fy CHyyy CFy(Hyyy) € Hyjp CFo(Hyy2) € Hyyy C Fy(Hgpy) C Fy.

By continuing this method for every ¢t € D, where D C [0,1] is the set of rational
numbers that their denominators are exponents of 2, we obtain Gs—sets H; with the
property that if ¢1,¢2 € D and t; < ¢y, then Hy, C H;,. We define the function h on
X by h(z) =inf{t: z € Hy} for x & F and h(z) =1 for z € Fy.

Note that for every x € X,0 < h(z) < 1, i.e., h maps X into [0,1]. Also, we
note that for any ¢ € D,F; C Hy; hence h(Fy) = {0}. Furthermore, by defini-
tion, h(Fy) = {1}. It remains only to prove that h is a Baire-.5 function on X.
For every a € R, we have if < 0 then {z € X : h(z) < o} = & and if
0 < a then {zr € X : h(z) < a} = U{H; : t < a}, hence, they are Gs—sets
of X. Similarly, if < 0 then {x € X : h(z) > a} = X and if 0 < « then
{zr € X : h(z) > o} = U{(F,(H¢))® : t > a} hence, every of them is a Gs—set.
Consequently & is a Baire-.5 function. |

Lemma 3.4. Suppose that X is the topological space such that we can separate
every two disjoint F,—sets by Gs—sets. If F} and F5, are two disjoint F,,—sets of X
and F7j is a countable intersection of Gs—sets, then there exists a Baire-.5 function A
on X into [0, 1] such that h=1(0) = Fy and h(Fy) = {1}.

Proof. Suppose that Fy = (", Gy, where G,, is a Gs—set of X. We can suppose that

G,NF, = &, otherwise we can substitute G, by G, \ F>. By Lemma 3.3, for every
n € N, there exists a Baire-.5 function h,, on X into [0,1] such that h,(F;) = {0}
and h, (X \ G,) = {1}. We set h(z) =07 27" hy,(2).

Since the above series is uniformly convergent, it follows that h is a Baire-.5
function from X to [0, 1]. Since for every n € N, F; C X \ G,,, therefore h,, (Fy) = {1}
and consequently h(Fy) = {1}. Since h,,(Fy) = {0}, hence h(Fy) = {0}. It suffices to
show that if © ¢ Fy, then h(z) # 0.

Now if z & F, since F} = ﬂzo:l G, therefore there exists ng € N such that
x & Gp,, hence h,,(z) =1, i.e., h(z) > 0. Therefore h=1(0) = F. O

Lemma 3.5. Suppose that X is the topological space such that we can separate
every two disjoint F,—sets by Gg—sets. The following conditions are equivalent:

(i) For every two disjoint F,—sets F} and F», there exists a Baire-.5 function h on
X into [0,1] such that h=1(0) = F; and h=1(1) = F».
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(ii) Every F,—set is a countable intersection of G5—set.
(iii) Every Gs—set is a countable union of Fi,—set.

Proof. (i) = (ii). Suppose that F is a F,—sets. Since & is a F,—set, by (i) there
exists a Baire-.5 function h on X into [0, 1] such that h=1(0) = F. Set G,, = {x € X :
h(z) < L1}. Then for every n € N, G, is a Gs—set and (,—, G, = {z € X : h(z) =
0}=F.

(ii) = (i). Suppose that F; and F» are two disjoint F, —sets. By Lemma 3.4, there
exists a Baire-.5 function f on X into [0, 1] such that f~1(0) = F} and f(F,) = {1}.
Set G={zeX:flx)<i},F={zeX:f(x)=1%},and H={z € X : f(z) > 3}.
Then GUF and HUF are two F,—sets and (GUF)NF, = & . By Lemma 3.4, there
exists a Baire-.5 function g on X into [%, 1] such that g~'(1) = F; and g(GUF) = {1}.
Define h by h(z) = f(x) for x € GUF, and h(z) = g(x) for x € HUF.h is well-defined
and a Baire-.5 function, since (GU F) N (H U F) = F and for every z € F we have
f(z) = g(z) = 3. Furthermore, (GU F) U (H UF) = X, hence h defined on X and
maps to [0,1]. Also, we have h=1(0) = F} and h=1(1) = Fy.

(ii) < (iii) By De Morgan law and noting that the complement of every F,—set
is a Gs—set and complement of every Gs—set is a F, —set, the equivalence is hold. O

Remark 3. [20] . A space X has the strong c—insertion property for (usc,lsc) if and
only if X is perfectly normal.

Corollary 3.3. For every two disjoint F,—sets F} and F5, there exists a Baire-.5
function h on X into [0,1] such that h=1(0) = F; and h=%(1) = F; if and only if X
has the strong B — .5—insertion property for (cusB — .5,clsB — .5).

Proof. Since for every two disjoint F,,—sets F} and F5, there exists a Baire-.5 function
h on X into [0,1] such that h=1(0) = Fy and h=}(1) = Fy, define G; = {z € X :
h(z) < 3} and Go = {# € X : h(z) > 1}. Then G; and G are two disjoint
Gs—sets that contain Fj and Fj, respectively. This means that, we can separate
every two disjoint F,—sets by Gs—sets. Hence by Corollary 3.1, X has the weak
B — .5—insertion property for (cusB — .5, clsB — .5). Now, assume that g and f are
functions on X such that g < f,g is cusB — .5 and f is clsB — .5. Since f — g is
clsB — .5, therefore the lower cut set A(f —¢,27") ={x € X : (f — g)(x) < 27"}
is a Fy—set. By Lemma 3.5, we can choose a sequence {F),} of F,—sets such that
{zeX:(f-9g)(x)>0}=U,—, F, and for every n € N, F,, and A(f — g,2™") are
disjoint. By Lemma 3.3, F,, and A(f —g,27") can be completely separated by Baire-
.5 functions. Hence by Theorem 2.2, X has the strong B — .5—insertion property for
(cusB — .5,clsB —.5).

On the other hand, suppose that F; and F, are two disjoint F,—sets. Since
FiNF, =  hence F, C Ff. Set g = xp, and f = Xre. Then fis clsB —.5 and g
is cusB — .5 and furthermore g < f. By hypothesis, there exists a Baire-.5 function
h on X such that g < h < f and whenever g(z) < f(x) we have g(z) < h(z) < f(x).
By definitions of f and g, we have h=1(1) = F,NFf = Fy and h=1(0) = FyNFS = Fy.
a

Remark 4. [2]. A space X has the strong c—insertion property for (Isc, usc) if and
only if each open subset of X is closed.
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Corollary 3.4. Every Gs—set is a F,—set if and only if X has the strong B —
.5—insertion property for (clsB — .5, cusB — .5).
Proof. By hypothesis, for every G of G5—set, we have F,(G) = G is a Gs—set. Hence
by Corollary 3.2, X has the weak B —.5—insertion property for (clsB —.5, cusB —.5).
Now, assume that g and f are functions on X such that g < f, g is cIlsB — .5 and f
is B—.5. Set A(f —¢,27") ={z € X : (f —g)(x) < 27™}. Then, since f — g is
cusB — .5, we can say that A(f — ¢,2™") is a Gs—set. By hypothesis, A(f — ¢,27")
isa Fy—set. Set G,, = X \ A(f —¢,2™™). Then G, is a Gs—set. This means that G,
and A(f — g,2™") are disjoint Gs—sets and also are two disjoint F,—sets. Therefore
G, and A(f — g,2™™) can be completely separated by Baire-.5 functions. Now, we
have |J;2, G, = {z € X : (f — g)(z) > 0}. By Theorem 2.2, X has the strong
B — .5—insertion property for (¢clsB — .5, B —.5). By an analogous argument, we can
prove that X has the strong B — .5—insertion property for (B — .5, cusB —.5). Hence,
by Theorem 2.3, X has the strong B —.5—insertion property for (clsB— .5, cusB—.5).
On the other hand, suppose that X has the strong B — .5—insertion property for
(clsB—.5,cusB—.5). Also, suppose that G is a Gs—set. Set f =1 and g = xg. Then
fiscusB—.5,¢gis clsB—.5 and g < f. By hypothesis, there exists a Baire-.5 function
h on X such that ¢ < h < f and whenever g(z) < f(x), we have g(z) < h(z) < f(x).
It is clear that h(G) = {1} and for x € X \ G we have 0 < h(z) < 1. Since h is a
Baire-.5 function, therefore {x € X : h(x) > 1} = Gisa F,—set, i.e., Gisa F,—set. O
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