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ABSTRACT In the early months of the COVID-19 pandemic with no designated cure or vaccine, the only
way to break the infection chain is self-isolation and maintaining the physical distancing. In this article,
we present a potential application of the Internet of Things (IoT) in healthcare and physical distance
monitoring for pandemic situations. The proposed framework consists of three parts: a lightweight and low-
cost IoT node, a smartphone application (app), and fog-basedMachine Learning (ML) tools for data analysis
and diagnosis. The IoT node tracks health parameters, including body temperature, cough rate, respiratory
rate, and blood oxygen saturation, then updates the smartphone app to display the user health conditions. The
app notifies the user to maintain a physical distance of 2 m (or 6 ft), which is a key factor in controlling virus
spread. In addition, a FuzzyMamdani system (running at the fog server) considers the environmental risk and
user health conditions to predict the risk of spreading infection in real time. The environmental risk conveys
from the virtual zone concept and provides updated information for different places. Two scenarios are
considered for the communication between the IoT node and fog server, 4G/5G/WiFi, or LoRa, which can be
selected based on environmental constraints. The required energy usage and bandwidth (BW) are compared
for various event scenarios. The COVID-SAFE framework can assist in minimizing the coronavirus exposure
risk.

INDEX TERMS IoT, health monitoring, smart healthcare, pandemic, COVID-19.

I. INTRODUCTION
Internet of Things (IoT) development brings new oppor-
tunities in many applications, including smart cities and
smart healthcare. Currently, the primary usage of the IoT
in healthcare can be categorized as remote monitoring and
real-time health systems. Controlling and managing dire sit-
uations, such as the one in 2020 when the coronavirus dis-
ease (COVID-19) took over the world, can be achieved with
the help of IoT systems, without imposing severe restric-
tions on people and industries. COVID-19 causes respiratory
symptoms and appears to be more contagious in comparison
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to SARS in 2003 [1]. One way to control the spread of
viruses, until a vaccine is available, is to observe physical
(or social) distancing [2]. By implementing better systems
for surveillance, healthcare, and transportation, contagious
diseases will have less chance of spreading [3], [4]. An IoT
system, combined with Artificial Intelligence (AI), may offer
the following contributions when considering a pandemic [5]:
1) improving public security using surveillance and image
recognition systems, 2) utilizing drones for supply, deliv-
ery, or disinfection, 3) contact tracing and limiting people’s
access to public places through apps and platforms empow-
ered with AI. An IoT system for healthcare is typically
composed ofmany sensors connected to a server; it gives real-
time monitoring of an environment or users. In a pandemic,
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AI-assisted sensors can be used to help predict whether or not
people are infectedwith the virus, based on signs such as body
temperature, coughing patterns, and blood oxygen levels.
Tracking people’s geolocation can be another useful feature.
During the outbreak of a contagious disease, tracking the
distance between people can provide valuable information.
Using technologies, such as Bluetooth, we can get a reason-
able estimate of how much distance people maintain when
walking in public places. This data can be used to warn people
who are not physically distanced within a specific range, 2 m
for example [6], of a person, and thereby, potentially prevent
further transmission of the virus. During the development of
such platforms, it is also crucial to consider security and data
management thoroughly to prevent abuse of personal infor-
mation [7], [8]. Governments may try to use these platforms
and information for permanent surveillance after a pandemic
to control and track people’s behaviors.

II. RELATED WORKS
During the last several years, different IoT applications have
been proposed to improve healthcare systems. The IoT can be
used for remote patient monitoring, e.g., connecting seniors
who have chronic diseases to doctors and medical resources
[9]. IoT applications have been implemented to aid people
with Parkinson’s [10] and Alzheimer’s disease [11]. It offers
disaster management for seniors who are living alone and
need special care [12] and can also be applied to manage
equipment and patients in hospitals [13]. In a smart healthcare
setting, the IoT can help to provide a remote diagnosis prior
to hospitals for more efficient treatment [14]. For diabetic
patients, it is vital tomonitor their blood glucose continuously
[15]; blood glucose data can be sent from wearable sen-
sors to doctors or smartphones for continuous monitoring of
patients’ state of health. Castillejo et al. [16] develop an IoT
e-health system based on Wireless Sensor Networks (WSN)
for firefighters.

Geolocation of people gives important information about
a potential outbreak during a pandemic. This process can
be performed in many ways, each having its pros and cons
although providing accurate estimations. A global position-
ing system (GPS) uses large power consumption. However,
GPS accuracy can be severely degraded based on the posi-
tion of a receiver and satellites, especially indoors [17]. The
work in [18] has demonstrated the feasibility of using the
Received Signal Strength Indicator (RSSI) to locate the user
in an indoor environment. The user carries a mobile which
is connected to the Wireless Local Area Network (WLAN).
The mobile sends a signal to several fixed position access
points (APs), which are then fused using a Center of Gravity
algorithm to locate the user. Chawathe [19] conveys the usage
of Bluetooth beacons for geolocation tracking. Bluetooth is
used everywhere from smartwatches to phones, but one prob-
lem of using this technology is the reflection of its signals,
which makes it difficult to acquire accurate distance estima-
tions. In [20], a low-power tracking method for IoT systems
is proposed. It uses an orientation sensor and accelerom-

eter for geolocation tracking to reduce the use of GPS,
which requires less power consumption. Recently, Apple and
Google announced that they would be using Bluetooth for
contact tracing of iOS and Android users [21]. Users can turn
it on or off, and the data would only be given to trusted health
authorities that follow specified privacy policies.

Audio signal processing is another area that can be help-
ful for the diagnosis of many respiratory diseases. For
COVID-19, the patients with advanced cases often suffer
from coughing in, but it can also be a symptom of influenza
and many other medical conditions [22]. Currently, many
research groups are working on this idea to battle COVID-19
[23], including Coughvid from Ecole Polytechnique Federale
de Lausanne (EPFL) [24], Breath for Science from NYU
[25], CoughAgainstCovid from Wadhwani AI group in col-
laboration with Stanford University [26], and COVID Voice
Detector from Carnegie Mellon University [27]. Imran et al.
[22] have made an AI model to distinguish between coughs
related to COVID-19 and coughs coused by other respiratory
conditions. Their model has achieved promising results; how-
ever, their dataset is not large enough. Providing more data
about the coughing of COVID-19 patients will make such AI
models much more effective.

FluPhone [28] is one of the first projects that utilized
users’ phones to study how fast an infectious disease spreads.
Mobile phones were used to collect some data, such as the
presence of nearby Bluetooth devices, GPS coordination,
and flu symptoms. Then, the data were sent to a server
via 3G/GPRS [29]. EpiMap [30] was another project done
followed FluPhone. The proposed framework could be used
for rural areas or developing countries, where opportunistic
networks and satellite communications were employed for
the transmission of data. Another recent study [30] evaluates
how much active contact tracing and surveillance can reduce
the spread of infectious diseases. The results show thatmobile
phone contact tracing has significant social and economic
benefits.

In this article, the proposed COVID-SAFE framework
offers: 1) a low-cost and lightweight IoT node to monitor
continually a person’s body temperature, heart rate, and blood
oxygen saturation, and periodically monitor coughing pat-
terns; 2) a smartphone app to display the parameters and
individual risk factors; 3) a physical distance tracking mech-
anism using Bluetooth 4.0 technology to alert the user in case
of violation of safe physical distance; and 4) a fog server
that collects data from the IoT nodes and applies a machine-
learning algorithm to send the necessary information to users.

III. PROPOSED FRAMEWORK
The development of the COVID-SAFE platform relies on
three parts, including a wearable IoT device, smartphone app,
and fog (or cloud) server. The hardware contains nodes that
were developed on the Raspberry Pi Zero (RPIZ). The soft-
ware parts include an application program interface (API) for
interacting with users on a smartphone, and a fuzzy decision-
making system on the fog server. Nodes collect specific vital
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data from participations and upgrade their decision-making
regulations to aid users in various scenarios, such as the
need to refer to a doctor, maintaining physical distance from
others, and alerts regarding high-risk areas. Fig. 1 illustrates
the high-level architecture of the COVID-SAFE framework.
A detailed description of each part is given in the next sec-
tions.

A. WEARABLE IoT DEVICE
This IoT node works in association with the user’s smart-
phone to collect proximity data using Bluetooth and to com-
municate with the server through the cellular data network.
It consists of a RPIZ as the central processor, temperature
and photoplethysmogram sensors, and a LoRa module for
data communication in the absence of a cellular data network
and WiFi. The system then is synchronized with the soft-
ware to monitor the user’s behavior during daily activities.
In Scenario-1, the IoT node sends the sensor data to the
smartphone app via Bluetooth connection. The smartphone
then sends the data stream to the server via 4G/5G or WiFi.
The server feeds the app with the latest updates. The app can
notify users of new restrictions and provide useful tips
given by the health service and governments. Meanwhile,
the app sends the participations’ body parameters for further
processing. The cloud server receives all the information and
applies a fuzzy inference system on the data, and finally sends
back the risk score to the phone for the user. The second
mode of operation (Scenario-2) is a LoRa-based network. The
IoT node enters this mode when a 4G/5G/WiFi connection
is not available. A possible situation is in rural areas with
limited Global System for Mobile Communications (GSM)
coverage.

The RPIZ has a 1 GHz single Central Processing Unit
(CPU) core with 512 MB of Random Access Memory
(RAM), several Global Purpose Input/Outputs (GPIOs),
wireless LAN, and Bluetooth connectivity, all in one plat-
form. These features make the RPIZ a suitable choice for
implementing many IoT-based systems. The COVID-SAFE
framework is equipped with a temperature sensor and a pho-
toplethysmogram (PPG) sensor. The PPG sensor is a non-
invasive tool that attaches painlessly to the user’s fingertip,
sending two wavelengths of light through the finger, and
captures the reflected light using a pin diode. The output of
this sensor is a PPG signal. The PPG recording is based on
an analog sensor and needs a converter before connecting to
the digital part; hence, an analog-to-digital converter (ADC)
is used. The RPIZ is equipped with an internal Bluetooth
and WiFi module, which makes it easy to interface with a
smartphone app. The IoT node is battery operated and is
designed with a 3D printer as a finger clip to encapsulate
the necessary hardware and to be friendly for the user during
daily activities.

In order to measure the power consumption of the system,
the wearable IoT device is connected to a digital wattmeter.
The data is logged in a computer that produces the wattage
measurements.

B. SMARTPHONE APP
Fig. 2 shows the COVID-SAFE smartphone app, which is
built to interact easily with users. First, the user has to create
an account and answer general background questions such as
gender, age, weight, height, and history of diseases. Fig. 2(b)
shows the general information page. By accumulating this
information, the system can provide an individual risk factor
for the user. Fig. 2(c) shows the radar dashboard; in this
menu, all adjacent nodes in the range of 3 m are shown
on the screen. The red dots illustrate nodes in the range
of 2 m or less, the yellow dots indicate nodes between 2 to
3 m, and green dots are nodes placed at 3 m or further. The
app notifies the user as soon as the second node comes closer
than the specified range. The position of nodes on the radar
screen are separated for better visualization purposes. The
app can display the heart rate, body temperature, blood oxy-
gen saturation, and individual risk factor in real-time mode as
Fig. 2(d) shows. The output of the decision-making system
is depicted in Fig. 2(e). In this fragment, the app asks for
symptoms following the body parameters, and it provides the
risk evaluation, and sends some useful tips.

C. DECISION-MAKING SYSTEM
A fuzzy inference system called the decision-making sys-
tem, is used for predicting the risk of spreading the virus.
The model estimates a risk factor containing three linguis-
tic values (low, moderate, and high), which can help users
to find out if they are in a safe position or if they might
spread a disease. There has been significant evolving activ-
ities in this domain that are changing our understanding of
symptoms and significant features in diagnosis. For instance,
government quarantine strategies and risk tolerance may be
changed because of various factors, such as economic circum-
stances, or factors in different regions of a country. In this
regard, a fuzzy decision seems more suitable for predicting
the risk factor of a person since it conveys uncertainties.
Moreover, all predefined rules in a fuzzy system can be
updated regularly based on expert definitions from the cloud.
A similar model were developed by other researchers with
slightly different input variables [32].

A subset of samples from the Khorshid COVID Cohort
(KCC) study [33] was used to design the rules of the proposed
decision-making system. Thirty samples from COVID-19
patients (the case group) and thirty other samples from hospi-
talized pneumonia patients (or patients with similar breathing
problems) with negative Polymerase Chain Reaction (PCR)
and CT-scan results (the control group) were used in our
study. The following baseline patient parameters were con-
sidered in the clinical study: gender (female, male), age, body
temperature, oxygen saturation (SpO2), shortness of breath
(yes, no), cough severity (high, increasing-moderate, low),
and the presence of chronic respiratory disease (yes, no)
(Table 1).

In this research, Sugeno architecture [34] is utilized, and an
Adaptive-Network-Based Fuzzy Inference System (ANFIS)
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FIGURE 1. High-level architecture of COVID-SAFE framework, in which COVID-SAFE-1 is carried by the user and COVID-SAFE-2 - N belong
to adjacent people.

FIGURE 2. COVID-SAFE application which is connected to fog server based on predefined API, a) login menu b) general
information page c) radar dashboard d) health monitoring menu and e) individual risk factor.

is used for training memberships and defining rules [35]
for simplicity. All membership function types are selected
based on a Gaussian function, which is more conventional
for training ANFIS. A similar model [36] was developed by
other researchers, wherein they selected rules and member-
ship properties manually without using ANFIS. In addition
to the ANFIS model, a support vector machine (SVM) [37]

and decision tree [38] are trained to be compared with the
proposed method. The advantages of a fuzzy system are that
it can handle uncertainty and its linguistic rules can be better
realized.

The cellphone fetches the rules from the cloud, which is
updated regularly. Inputs of the fuzzy system are defined
based on health features, and region-based information.
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TABLE 1. Characteristics of the participants in the COVID-19 and
non-COVID-19 groups.

Health-related features include respiratory rate, cough rate,
temperature, Body Mass Index (BMI), and blood oxygen
saturation level. The region-based risk value can be calcu-
lated on the server using parameters such as the last time an
exposed case was detected and the number of cases in the
region.

D. DATA ACQUISITION
Two different sensors are used in the IoT node. At the startup,
the RPIZ initializes all sensors and makes them ready to
capture the data. The digital temperature sensor has a 4-
byte output resolution. The body temperature usually does
not change rapidly; hence, the sensor captures data every
15 or 30 min. In order to have consistency in values, at each
iteration, 10 samples are taken, and their average is stored into
internal memory storage and also is sent to the server.

The output of the photoplethysmogram sensor is a PPG
signal. Due to the nature of the signal, it should be sampled
continuously for at least 10 seconds to see the patterns and
extract necessary features. The IoT node is responsible to
reads the output of the sensor, using an external 8-bit ADC
at a 50 Hz sampling rate. By applying the signal processing
algorithms on the PPG signal, the heart rate, blood oxygen
saturation (SpO2), and respiratory rhythm can be extracted
[39]. For measuring the SpO2 from the signal, first, an aver-
age of five subsequent samples of the signals (A1 and A2)
and offsets (D1 and D2) for red and infrared waveforms
(indexed as 1 and 2, respectively) are measured. Then, SpO2
is measured using a formula given by Maxim IntegratedTM.

G = −45.060× K 2
+ 30.354× K + 98.845 (1)

where, K = (A1/D1) / (A2/D2) and G is the SpO2 value.
According to the literature [40], there is substantial evidence
that can increasing respiratory rate is a contributing factor in
determining COVID-19. For predicting the respiratory rate
from the PPG signal, an adaptive lattice notch filter is utilized
based on Park and Lee [41]; the results can achieve 0.78% R-
square on the MIMIC II dataset.

This database contains physiological signals and a time
series of vital signs captured from patient monitors, as well
as comprehensive clinical information obtained from hospital
information systems. Furthermore, an average of 10 seconds

TABLE 2. Comparison of smartphone-based wireless interface.

of an estimated respiratory rate and SpO2 are used for reduc-
ing prediction error.

The proposed framework can record the surrounding voice
using the phone’s microphone to detect the user’s coughing
patterns. To save battery power consumption, this feature is
activated based on the user’s request. For cough detection,
a pre-trained model for acoustic activity prediction is used
[42]. For extracting a cough from the environment sounds,
a pre-trained model is utilized [43]. After activation, the input
microphone is sampled at 5 KHz and an 8-bit resolution
for a duration of 10 seconds at each iteration. The reason
for choosing 5 KHz is that cough frequency usually accuse
between 200-900 Hz [44]. All the sensors’ data are stored in
internal memory for further processing.

E. PROXIMITY DETECTION
Most of the present smartphones have Bluetooth Low
Energy (BLE) V4.0 or above, along with another short-range
wireless interface like Near Field Communication (NFC).
Table 2 presents the comparison among related wireless tech-
nologies. It shows that NFC cannot be used for distance
measurement due to its short range, and Bluetooth cannot
be used due to its higher power consumption and lack of
broadcast capability. On the other hand, using the beacon
feature implemented in BLE, a connectionless RSSI moni-
toring can be used to detect the proximity of the devices or to
calculate or measure the relative distance between the smart-
phones.

The proposedmethodmakes it possible to indicate whether
another person is located at an adjacent area or not. As soon
as the second IoT node (along with the associated phone)
comes within range, a flag is raised and the user is notified.
The relationship between the transmitted signal strength and
received signal power level can be mathematically expressed
by equation (2):

d = 10

(
Tx−R
10n

)
(2)

where, d stands for the distance, Tx is the transmit power,
R is the received RSSI values, and n is the environmental
coefficient.

Two experiments were performed to validate the distance
estimation using the RSSI. In the first experiment, two phones
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FIGURE 3. BLE test setup.

are placed at different orientation (face to face and side by
side). One phone is placed at a fixed position to record the
signal strength, while the second one canmove around. In this
experiment, the transmit power was set at 4 different levels
(−16 dBm, −26 dBm, −35 dBm, and −59 dBm), and the
position of the moving phone was changed from 30 to 240 cm
with a 30 cm step size. The same experiment was performed
again with a 12 cm wooden wall between the scanner phone
and broadcasters to consider various orientation and other
ambient conditions, such as reflection and absorption.

In experiment 2, multiple smartphones of different models
were used, and Fig. 3 shows a graphical representation of the
experimental setup. The RSSI data is acquired in the phone
at the center using ‘‘Beacon Scanner’’ with an acquisition
frequency of 1 Hz, while other phones are traveling toward
and away from the center phone at different angles and ori-
entations. All phones are configured to broadcast the BLE
beacon signal (using Google’s Eddystone protocol) at the
same interval (3 Hz) with the same transmit power level (−59
dBm). Various angular positions or orientations are defined
for the moving phones, and they change their states while the
fixed center phone records the received signals.

F. SERVER AND NETWORKING
All the sensors’ data are sent from the IoT node to the
smartphone usingWiFi (IEEE 802.11.x standard protocol) as
a physical layer for real-time data visualization. Meanwhile,
data are transferred to the fog server for further processing.
Any transmission of information through the network uti-
lizing IPv4 or IPv6 and the Representational State Transfer
(REST) API is given for each participant to access his or her
information.

The main advantage of having REST API is that small
devices can use the API even if they have certain limitations
such as limited computational capacity and low physical
memory. A user can use a designed web page or a smart-
phone app to link to the services and see his or her status.

User data are saved as a user history in the database for
potential future development. Connecting to the server can
be established either through a 4G/5G infrastructure or LoRa
network. Fig. 4 shows a map with different zones; each zone
indicates the risk of infection. The database can be updated
based on the recent status of regions reported by governments,
with parameters such as the number of residences and history
of infected people. Themap is divided into three colors: green
for low risk of infection, yellow for moderate, and red for
high.

Zone segmentation has several benefits. First, using the
information that each zone provides, users can manage their
social activities with the necessary precautions. In addition,
governments can send notification to users or limit their
access in case of emergency. Thus, the decision-making pro-
cess is enhanced, and reaction time to a situation is signifi-
cantly reduced. Information on the zones is then used in risk
assessment by the software. The zones should cover thewhole
map; however, for visualization, only parts of the zones are
depicted in Fig. 4.

IV. RESULTS AND DISCUSSION
A. DISTANCE MEASURING
According to our experiment, Fig. 5 shows the RSSI values
at different distances from 30 to 240 cm, where phones are
placed face-to-face, side-by-side, and face to face separated
by a wooden wall. The results show that the relative ori-
entation between two IoT nodes could change the RSSI by
a maximum value of −10 dBm when phones are placed in
side-by-side position. The same experiments were conducted
while separating the transmitter and receiver by a wooden
wall with a thickness of 10 cm to examine the effect of
signal blockage by the wooden wall, and the result is shown
in Fig. 5(c). Comparing Fig. 5(a) and 5(b) shows that the RSSI
levels depend on the relative positions of the phones. Fig. 5(c)
also shows significant changes in the RSSI levels with the
presence of a wall in between. As expected, a decrease of
RSSI with an increase of distance was observed.

This result is further justified by experiment 2 (as shown
in Fig. 3), and the results are shown in Fig. 6. The data are
processed separately for every phone used, and there is a
noticeable relationship with the distance from the receiving
phone. Although this relationship between RSSI and distance
is highly dependent on the device itself (model or hardware
construction), this can still be used to calculate the distance
between two devices by using Bayesian filters (such as a
Kalman filter or particle filter) to reduce the noise in the RSSI
data [45].

Equation (2) can be presented in a more straightforward
format, as shown in (3), where the environmental coefficient
n is replaced by a and b. Parameter b is used as a threshold for
the initial alarm or to trigger the calculation function locally
in the IoT node. Parameter b, along with the reference RSSI
(RSSI at 1 m distance, denoted as R2), is used to calculate the
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FIGURE 4. Zone definition (displayed on the smartphone app showing real-time geolocation of hotspots; zone 0 being the most critical with the
highest risk of spread; zone 1 has medium risk; zone 2 has low risk).

distance from the RSSI measured (denoted as R1).

d = aTxR1 + b+ R2 (3)

Fig. 7(a) shows the phone-specific values of the reference
RSSI (at 1 m distance) and the parameter b for different
RSSI levels like maximum, minimum, Q1 (lower limit of
the 75% quartile), Q3 (upper limit of the 75% quartile); and
Fig. 7(b) shows the phone-specific values of the parameter
a for different RSSI levels. For this experiment, a threshold
of −93 dBm (taken from the value of parameter b for the
maximum RSSI level above 2 m distance) can be used to
trigger the proximity aware alarm and the distance calcula-
tion function in the smartphone app. However, a, b, and the
reference RSSI are dependent on the smartphone used and
the real-life environment. There are several algorithms, such
as SVM and Machine Learning (ML) [46], with the device
or environment-specific training parameterization [47] that
can be used to calculate the distance between the devices.
In addition, AltBeacon can be used to get device-specific
information (manufacturer identification number and 1 m
reference RSSI) along with the beacon signal [48] which can
be used to improve the distance accuracy for different types
of devices used.

TABLE 3. Inputs and outputs membership functions in proposed fuzzy
system.

In order to notify the user to maintain physical distancing,
three threshold values are indicated. The software checks the
RSSI values then maps them to the distance according to
equation (3). If the distance is less than 200 cm a red flag
is raised, if the transmitter is in the range of 200 to 300 cm
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FIGURE 5. RSSI of BLE for different distances at different Tx power gain
(dBm), keeping two smartphones in a) face-to-face, b) side-by-side
position, and c) two smartphones in the face-to-face position separated
by a wooden wall.

the flag is yellow, and if the distance is longer than 300 cm it
is green.

FIGURE 6. RSSI of BLE at four different distances with various orientation
and fixed transmit power for three different types of cellphones.

FIGURE 7. (a) Phone specific RSSI values for the 1 m reference and the
RSSI threshold of b for different levels of RSSI data (maximum, minimum,
median, Q1 of 75%, and Q3 of 75% RSSI values), (b) phone specific values
of a for different levels of RSSI data (maximum, minimum, median, Q1 of
75%, and Q3 of 75%.

B. DECISION-MAKING RESULTS
Table 3 shows the parameters acquired for training the model
using ANFIS.

The performance of the proposedmethod is compared with
two ML methods, decision tree and SVM classifiers. The
results are provided for five times a training algorithm with
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FIGURE 8. The designed fuzzy inference system based on rules defined in the cloud. Two examples of rules for showing how a person’s
risk is generated, based on input features.

TABLE 4. Accuracy and F1-score indices for test set according to different
methods.

shuffling data based on hold-out validation (70% train-30%
test) in Table 4.

Fig. 8 illustrates two examples of fuzzy rules and shows a
risk of 0.79 and 0.07 for two people aged 45, with different
genders, and similar shortness of breath. The first person
has a low fever, and his cough rate is higher than the other
persons. It is worth noting that the estimated rules in the fuzzy
interference systemmay not be ideal and can be extended and
modified over time based on received feedback. The closed-

loop system requires more data and could be addressed in
future work.

C. SYSTEM PERFORMANCE
Table. 5 shows scenario-specific activities with power
requirements for the various activities measured at the labo-
ratory. According to the measured power, we can quantify the
overall energy demand based on scenario-specific activities.
Smartphone app power analysis shows that 25 mA is used for
all processing in the cellphone. The bandwidth requirement is
based on a one-second volume of data generated by the PPG
sensors and voice data at the specified sampling rate.

Time ranges, spanning 5 to 30 minutes, were used for data
transfer using LoRa or Bluetooth. Scenario-specific energy
demand was distinct, depending on time span. Fig. 9 shows
the hourly energy requirement for different transmission
intervals; No Network and Scenario-2 require almost the
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TABLE 5. Scenario specific activities and power requirement.

FIGURE 9. Scenario-specific hourly energy requirement for different
transmission intervals.

FIGURE 10. Scenario-specific hourly energy requirement.

same amount of energy, while Scenario-1 requires less than
half of that as there is no offline processing in the IoT node
itself. Since the node may need to be carried during only
part of the day, the daily energy requirement will also vary
depending on the duration of the operation. Scenario-1 is
shown on a different scale for better visualization of the
changes with transmission intervals.

Fig. 10 shows the energy requirement for various durations
of daily operation using 15-minute transmission intervals.
It also shows that local processing requires more than double
the energy, compared with that required to send the unpro-
cessed data over the wireless link.

Since data acquisition and processing were carried out
continuously, and the unprocessed data was sent to the net-
work, hourly data volume remained the same for Scenario-1.

FIGURE 11. Scenario-specific hourly data volume for different
transmission intervals.

FIGURE 12. Scenario-specific data volume for different operation
durations at 15-minute transmission intervals.

However, it varied in Scenario-2 as only the processed data
was sent. Fig. 11 shows the hourly data volume sent over the
wireless links (both LoRa and Bluetooth) for different trans-
mission intervals. Scenario-1 generated much higher data
volume compared with Scenario-2 due to the transmission of
unprocessed sensor data over the wireless link. Fig. 12 shows
the data volume to be transferred over the wireless links at a
transmission interval of 15 minutes for different durations of
operation of the portable node.

After comparing both scenarios in terms of energy and
bandwidth requirement, it can be seen that Scenario-1 is
better fit for outdoor use, where the energy requirement could
be a constraint and there is good quality wireless data connec-
tivity, mainly in an urban area. On the other hand, Scenario-
2might be a better choice for rural areas with a lack of cellular
network coverage. Therefore, the energy requirement can be
reduced by increasing the data-transmission interval mainly
for outdoor operation of the node.

Table 6 provides a summary of recent similar systems
available to fight COVID-19 with the help of digital technol-
ogy. As shown the proposed COVID-SAFE system presents
a more complete IoT framework than others and can be used
to control the infection after the pandemic. Many countries
have implemented contact tracing apps, which are similar to
the one shown in [21]. However, these apps merely trace a
patient’s history and location, and notify users if anyone has
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TABLE 6. Available technologies for COVID-19 pandemic.

contracted COVID-19 in the places they have recently visited.
On the other hand, the proposed system provides hardware,
sensors, and software (ML and mobile apps), which offer
many other benefits, as shown in the table.

V. CONCLUSION
In this article, an IoT framework is presented to monitor
participants’ health conditions and notify them to maintain
physical distancing. The proposed system integrates a wear-
able IoT node with a smartphone app, by which the IoT
sensor node can collect a user’s health parameters, such as
temperature and blood oxygen saturation, and the smartphone
connects to the network to send the data to the server. The
paper proposed a Radio Frequency (RF) distance-monitoring
method which operates both for indoor and outdoor envi-
ronments to notify users to maintain the physical distanc-
ing. Applying ML algorithms on body parameters makes it
possible to monitor participant’s’ health conditions and to
notify individuals in real time. A voice coughing-detector
continually monitors the user’s voice and records the number
and severity of coughing. The fog-based server is imple-
mented to process received data from an IoT node using
a cellular network or LoRa connection. In addition, locally
processing the data makes it possible to use the IoT node in
the environments without internet connectivity or fog-based
networks. The system can assist participants in monitoring
their daily activities and minimize the risk of exposure to the
Coronavirus.
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