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Abstract
Purpose Deep learning (DL) has led to widespread changes in automated segmentation and classification for medical pur-
poses. This study is an attempt to use statistical methods to analyze studies related to segmentation and classification of head 
and neck cancers (HNCs) and brain tumors in MRI images.
Methods PubMed, Web of Science, Embase, and Scopus were searched to retrieve related studies published from January 
2016 to January 2020. Studies that evaluated the performance of DL-based models in the segmentation, and/or classification 
and/or grading of HNCs and/or brain tumors were included. Selected studies for each analysis were statistically evaluated 
based on the diagnostic performance metrics.
Results The search results retrieved 1,664 related studies, of which 30 studies were eligible for meta-analysis. The overall 
performance of DL models for the complete tumor in terms of the pooled Dice score, sensitivity, and specificity was 0.8965 
(95% confidence interval (95% CI): 0.76–0.9994), 0.9132 (95% CI: 0.71–0.994) and 0.9164 (95% CI: 0.78–1.00), respec-
tively. The DL methods achieved the highest performance for classifying three types of glioma, meningioma, and pituitary 
tumors with overall accuracies of 96.01%, 99.73%, and 96.58%, respectively. Stratification of glioma tumors by high and 
low grading revealed overall accuracies of 94.32% and 94.23% for the DL methods, respectively.
Conclusion Based on the obtained results, we can acknowledge the significant ability of DL methods in the mentioned 
applications. Poor reporting in these studies challenges the analysis process, so it is recommended that future studies report 
comprehensive results based on different metrics.

Keywords Classification · Deep learning · Head & neck tumors · Magnetic resonance imaging · Meta-analysis · 
Segmentation

Introduction

Worldwide, with more than 600,000 new cases annually, 
head and neck cancer (HNC) is the sixth most common can-
cer [1, 2]. It accounts for 300,000 deaths in the world each 
year [3]. HNCs defined as tumors that develop in the head 
and neck region which includes tumors of salivary gland, 
pharynx, larynx, oral cavity, nasal cavity, paranasal sinus, 
and the thyroid. [4, 5]. Regardless of different histopathol-
ogy of HNCs, almost 85% of them are squamous cell car-
cinomas [5, 6]. Currently, HNCs are treated with radiation 
therapy, chemotherapy, surgery, or a combination of them. 
It is a complicated process due to large target volume and 
many radiation-sensitive critical tissues near the target [7, 
8]. A dismal 40–50% survival rate, due to development of 
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a second primary cancer or distant metastasis, means that 
treatment failure occurs in almost half of the patients regard-
less of rigorous combined treatment [9]; however, the loco-
regional control of most HNCs is acceptable [10–12].

Brain tumor is one of the other types of neoplasms which 
can also develop in the head and neck region, but its diag-
nosis and treatment process are different from HNCs. It 
accounts for 1.6% of all malignances and 2.5% of all cancer-
related deaths [2]. Based on the origin, brain tumors are 
divided into two groups, primary and metastatic. Gliomas 
are the most common type of primary brain tumors in adults 
which based on the clinical criteria and histopathology are 
graded as I–IV. Grade I (pilocytic astrocytoma) is benign 
tumors with nearly normal cells in histopathological exami-
nations. Grade II (low grade glioma (LGG)) includes oligo-
dendroglioma, astrocytoma, and mixed oligoastrocytoma. 
Some LGGs eventually evolve to high grade glioma (HGG) 
which include grade III and IV. Grade IV (glioblastoma mul-
tiform (GBM)) is considered as the most severe type with 
highest spreading rate [13].

MRI is an effective imaging technique in the diagnosis 
process of HNCs and brain tumors due to employing non-
ionizing radiation and its higher soft-tissue resolution in 
addition to employing of contrast-enhanced agents as well as 
acquiring different images by using various imaging param-
eters [14, 15]. It is the commonly used imaging modality 
to evaluate HNCs and brain tumors as contrasted to other 
imaging procedures including positron emission tomogra-
phy (PET) and computerized tomography (CT) [16–18], and 
also it can obtain three-dimensional images which provides 
detailed information about the target [19].

Image segmentation is a task in which a part of a medi-
cal image that is of interest to the medical team is auto-
matically separated from the rest of the image contents [20]. 
Although the utility of manual segmentation is prevalent in 
the clinical routine currently, more time and clinical prac-
tice is required by the radiologists. In order to detect HNCs 
and brain tumors, several deep learning (DL) models such 
as U-Net and DeepMedic were introduced [21, 22]. DL is 
a subset of machine learning and recently exhibited a con-
siderable efficiency as a widespread technique, especially in 
classification and segmentation drawbacks. Due to some per-
formance limitation, convolutional neural network (CNN) 
models were rapidly developed in recent years. CNN is a 
class of DL that requires minimal preprocessing and gener-
ally used in evaluating of visual imagery [23]. Feature learn-
ing and providing unlimited accuracy are major superiority 
of CNNs to classify various types and grades of brain tumors 
compared with conventional machine learning [15].

Medical image classification refers to a concept in which 
images are categorized into different classes based on, for 
example, the type of lesion observed in images using a 
supervised learning method. Once the training process is 

performed by a set of images, the classifier can be used in 
subsequent machine-based medical diagnoses [24]. Classi-
fication of brain tumors has been carried out using differ-
ent imaging techniques and machine learning approaches 
in recent years [25–28]. CNN uses convolution operators in 
most layers of the networks instead of matrix multiplication 
and consequently contributes to priority of convolutional 
networks in resolving drawbacks with great computational 
values. This capability is considerable due to thousands of 
images with different types and qualities included in MRI-
dataset as well as automatic feature extraction is the other 
advantage of this method compared with shallow machine 
learning methods.

Automatic determination of the type of lesion or its 
related area using the images is essential because it allows 
medical diagnoses to be made even in the absence of experts 
and in the shortest possible time. In this work, we aimed to 
evaluate the performance of the DL models for the segmen-
tation and classification of MRI data of patients with HNCs 
and brain tumors. Then, we evaluated the performance of 
the models in both classification and segmentation of HNCs 
and brain tumors by comparing automated measurements to 
manual measurements derived from experts. Therefore, the 
contribution of this study is twofold:

• Analysis of studies related to DL-based MR images seg-
mentation associated with HNCs and brain tumors.

• Analysis of the results of studies related to the DL-based 
classification and grading of brain tumors in MR images.

The rest of this paper is organized as follows. "Meth-
ods and data to review" section describes the search and 
selection process of the eligible studies and statistical 
approaches to calculate the performance metrics. The results 
of this meta-analysis are given in "Search strategy" section. 
Finally,  "Selection criteria and data extraction" section and 
"Statistical analysis" section are devoted to the discussion 
and conclusion.

Methods and data to review

Search strategy

After 2016, massive research efforts have been devoted to 
develop DL algorithms for automated segmentation of tumors 
of head and neck region from MR images, continuing to date. 
To identify potentially relevant articles, a title/abstract/key-
word search was performed in PubMed, Web of Science, 
Embase, and Scopus databases until January 2020. Our search 
strategy employed specific search tips of each database using 
the search query: ("deep learning" OR "hierarchical neural 
network" OR "convolutional neural network" OR "deep" OR 
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"learning") AND ("segmentation" or "automated segmenta-
tion" OR "classification" OR "automated classification") AND 
("head and neck neoplasms" OR " head-and-neck" OR " gli-
oma " OR "brain tumor" OR "brain") AND (MRI OR "mag-
netic resonance imaging"). In addition, a manually evaluation 
was done to collect all potentially eligible articles. We did not 
impose any search limitation based on date of publications.

Selection criteria and data extraction

English original articles which met the following criteria were 
included in the meta-analysis: a) develop a DL algorithm for 
the following: 1) segmentation of MRI data from patients 
with HNC and/or brain tumor; 2) classification and grading 
of MRI data from patients with HNC and/or brain tumor, b) 
sufficient data regarding the performance of developed algo-
rithms should be available or could be calculated from the raw 
data (e.g., accuracy, sensitivity, and specificity). The exclusion 
criteria were as follows: a) reviews, conference abstracts, book 
chapters, meta-analysis, editorials, duplicate publication, b) 
lacking sufficient data regarding diagnostic estimates such as 
true positives (TP), false negatives (FN), true negatives (TN), 
false positives (FP), sensitivity, and specificity, c) inability to 
obtain the full text.

The titles and abstracts of the retrieved studies screened 
independently for valid articles by two reviewers (S. BG., S. 
N.). In the next step, the following data were extracted from 
each eligible study: author’s name, publication year, type of 
the cancer, type of DL-based model, TP, FP, FN, and TN. In 
studies, four labels manually were used to perform tumor seg-
mentation as follows; label 1: necrosis, label 2: edema, label 
3: non-enhancing tumor, and label 4: enhancing tumor. The 
ground truth segmentation was done by experienced neuro-
radiologists. Commonly, the tumor structure is divided into 
three regions for clinical applications, as core tumor (necro-
sis + non-enhancing tumor + enhancing tumor), enhanc-
ing tumor, and complete tumor (necrosis + non-enhancing 
tumor + enhancing tumor + edema).

To evaluate performance of the proposed DL-based meth-
ods in automated segmentation of HNC and brain tumor, three 
publicly available metrics: The Dice score, the specificity, and 
the sensitivity were extracted for each tumor region.

How to calculate the dice coefficient, the specificity and the 
sensitivity is given in Eqs. 1 to 3.

(1)Dice =
2TP

FP + 2TP + FN

(2)Sensitivity =
TP

TP + FN

where TP, TN, FP, and FN show true positive, true negative, 
false positive and false negative, respectively.

Other widely adopted measures, if calculated, Jaccard 
similarity coefficient (JSC), Average symmetric surface dis-
tance (ASSD), percent match (PM), correspondence ratio 
(CR), and 95th percentile Hausdorff distance (HD95) were 
also extracted. Equations 4 to 8 show how these metrics are 
calculated.

where G and S are related to ground truth and segmented 
regions, and g and s indicate the points on G and S, 
respectively.

Apart from these, the effectiveness of tumor grade (HGG, 
LGG) and image view (axial, sagittal, coronal, fusing) on the 
segmentation performance was evaluated. The performance 
of classification methods was evaluated using accuracy, sen-
sitivity, and specificity parameters. Accuracy is also calcu-
lated using Eq. 9.

Statistical analysis

Stata software (version 14.2; Stata Corporation, College Sta-
tion, TX) was used to perform meta-analysis. The segmen-
tation performance measures for each study calculated as 
pooled Dice, sensitivity, and specificity. Furthermore, posi-
tive likelihood ratio (PLR), negative likelihood ratio (NLR), 
and corresponding 95% confidence intervals (CIs) were cal-
culated for classification of grade and type of brain tumors. 
The analysis was based on the summary receiver operating 
characteristic (SROC) curves, and the area under the curve 
(AUC) is calculated. Fagan’s nomogram was applied to 

(3)Specificity =
TN

FP + FN
,

(4)JSC =
TP

TP + FP + FN

(5)ASSD =
TN

FP + FN

(6)PM =
TP

TP + FN

(7)CR =
TP − 0∕5 × FP

TP + FN

(8)

HD(GS) = max

{

sup

g ∈ G

inf

s ∈ S
d(gs)

sup

s ∈ S

inf

g ∈ G
d(gs)

}

,

(9)Accuracy =
TP + TN

TP + FP + TN + FN
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interpret clinical utility if DL algorithms diagnosing grade 
and type of brain tumors.

Results

We identified 1664 relevant articles, of which 1459 were 
screened after deleting 205 duplicated articles. Of them, 
1350 articles excluded by the screening of the little and 
abstract. Then, we assessed the full-text of the remain-
ing 109 articles for eligibility, of which 30 articles were 
selected for this meta-analysis [29–57]. The procedure 
of the literature retrieval and inclusion is presented in 
Fig. 1. The majority of the studies consisted of patients 

with brain tumors; however, four studies included naso-
pharyngeal cancer (NPC) [51, 58–60]. The most brain 
tumors consisted of patients with LGG and HGG; how-
ever, two included LGG [29, 56] and one included HGG 
[30] only. Most of the studies used available datasets 
including BRATS, REMBRANDT, TCGA-GBM, and 
TCGA-LGG; and ten studies relied on local datasets. In 
total, two studies used BRATS 2012 dataset; eight studies 
used BRATS 2013 dataset; two studies used BRATS 2014 
dataset; 16 studies used BRATS 2015 dataset; five stud-
ies used BRATS 2016 dataset; six studies used BRATS 
2017 dataset; and eight studies used BRATS 2018 data-
set. Four studies used other datasets; one studies used 
REMBRANDT dataset; one studies used TCGA-GBM, 

Fig. 1  PRISMA flowchart of the identification of eligible studies
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TCGA-LGG, and Figshare datasets. Main characteristics 
of the included studies are presented in Table 1.

Meta‑analysis results

A statistical analysis was conducted using the above data to 
analyze the performance of DL methods for head and neck 
tumor segmentation and classification. Seventeen studies 
provided sufficient information to evaluate the segmenta-
tion performance of head and neck tumor subregions using 
DL models compared with ground truth. Within this group, 
the performance of all DL model in terms of the pooled Dice 
score is 0.8965 (confidence intervals (95% CI:) 0.76–0.9994) 
for complete tumor, 0.7822 (95% CI: 0.56–0.952) for core 
tumor, and 0.7711 (95% CI: 0.561–0.948) for enhanced 
tumor (Fig. 2a), the pooled sensitivity is 0.9132 (95% CI: 
0.71–0.994) for complete tumor, 0.8103 (95% CI: 0.63–0.92) 
for core tumor, and 0.79 (95% CI: 0.65–0.9) for enhanced 
tumor (Fig. 2b), and the pooled specificity is 0.9164 (95% 
CI: 0.78–1.00) for complete tumor, 0.8314 (95% CI: 
0.61–0.93) for core tumor and 0.8105 (95% CI: 0.59–0.92) 
for enhanced tumor (Fig. 2c).

In addition, the evaluation of the segmentation perfor-
mance of DL methods in four studies with NPC and one 
study with LGG and HGG also considered by JSC, ASSD, 
PM, and CR metrics [40, 51, 58, 60, 61]. In terms of JSC, 
the DL methods gained an average value of 0.7969 for com-
plete tumor region based on 220 cases. The average PM 
using 89 patients was 0.879 for complete tumor region. For 
the CR, the DL methods achieved an average value of 0.804 
for complete tumor region based on 130 cases. DL methods 
achieved an average ASSD of 1.168 and an average HD95 
of 6.179 for complete tumor region.

Of the 18 studies, the segmentation performance of DL 
methods in four studies evaluated by subgrouping grade 
of glioma tumors. The pooled average Dice score of these 
four studies was 0.8395 and 0.8794 for LGG and HGG sub-
groups, respectively. From the pooled two studies, the seg-
mentation sensitivity and specificity were 0.833 and 0.90 
for LGG and were 0.8269 and 0.9643 for HGG subgroups, 
respectively. One study reported 3.4419 and 3.4805 HD95 
for LGG and HGG subgroups, respectively.

Of the 18 studies, two studies used four models to seg-
ment tumor images slice by slice in axial, coronal, and sagit-
tal views, and results of three different views were fused. For 
complete tumor, core tumor and enhanced tumor, results of 
analysis related to dice coefficient, sensitivity, and specific-
ity in different views are tabulated in Table 2. Also, Fig. 3 
shows the bar chart of the results. In one another study, the 
axial, coronal and sagittal view, and the multi-view DL 
method achieved an average ASSD of 1.361, 1.858, 1.762, 
and 1.203 for complete tumor, respectively. For the PM and 
CR, an average value of 0.84 and 0.75 in axial view, 0.745 

and 0.64 in coronal view, 0.8 and 0.78 in sagittal, 0.8593 
and 0.77 in the multi-view DL method reported for complete 
tumor, respectively.

The DL methods achieved the best performance for clas-
sifying three types of glioma, meningioma, and pituitary 
tumors with overall accuracies of 96.01%, 99.73%, and 
96.58%, respectively. In Fig. 4a, the confusion matrix is 
showed to check the performance. This matrix gives valuable 
information about the actual and predicted labels provided 
by the DL classification methods. Using this information, 
the sensitivity and specificity of the DL methods for clas-
sifying MR brain tumor images were 97.0% and 98.0% for 
glioma tumors, 94.0% and 98.0% for meningioma tumors, 
and 96.0% and 98.0% for pituitary tumors, respectively.

For glioma tumors, the AUC for SROC curve was 0.99 
(95% CI: 0.98–100) (Fig. 5a). Fagan’s nomogram analysis 
showed that with a pretest probability of 25%, DL as an 
automated diagnostic method can increase posttest probabil-
ity of a positive result to 93% while the posttest probability 
of a negative test was only 1% (Fig. 5b). When setting the 
pretest probability to 50%, DL increased the probability of a 
correct detection to 98% while there is only 3% probability 
of ignoring a glioma patient with a negative result (Fig. 5c). 
Based on 75% pretest probability, DL increased the prob-
ability of a correct detection to 99%, while there is a post-
test probability of 10% for ignoring a glioma patient with 
a negative result (Fig. 5d). The SROC curves and Fagan’s 
nomograms for meningioma and pituitary tumors are shown 
in Supplementary Material: Fig. S1-2.

Stratification of glioma tumors by high and low grading 
revealed overall accuracies of 94.32% and 94.23% for the DL 
methods, respectively (Fig. 4b). In addition, overall estimate 
achieved a sensitivity and specificity of 97.0% and 95.0% 
in classifying high-grade glioma respectively, and 95.0% 
and 98.0% in classifying low-grade glioma, respectively. 
For high-grade glioma tumors, the AUC for SROC curve 
was 0.98 (95% CI: 0.96–99) (Fig. 6a). Fagan’s nomogram 
analysis showed that with a pretest probability of 25%, DL 
as an automated diagnostic method can increase posttest 
probability of a positive result to 86% while the posttest 
probability of a negative test was only 1% (Fig. 6b). When 
setting the pretest probability to 50%, DL increased the prob-
ability of a correct detection to 95% while there is only 3% 
probability of ignoring a high-grade glioma patient with a 
negative result (Fig. 6c). Based on 75% pretest probability, 
DL increased the probability of a correct detection to 98%, 
while there is a posttest probability of 10% for ignoring a 
high-grade glioma patient with a negative result (Fig. 6d). 
The SROC curves and Fagan’s nomograms for low-grade 
glioma tumors as shown in Supplementary Material: Fig. S3.

When stratifying by Ι, ΙΙ, ΙΙΙ, ΙV grades (Fig. 4c), glio-
blastoma multiform tumors that are the most common 
and most malignant brain tumors were classified with 
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an excellent sensitivity and specificity of 97.61% and 
96.23%, and a total accuracy of 96.58%. Classifying grade 
III glioma revealed 94.65% accuracy, 84.28% sensitivity, 
and 98.08% specificity. For grade II, the accuracy, sensi-
tivity, and specificity were 95.14%, 90.36% and 96.8%, 
respectively. Accuracy of 99.76%, sensitivity of 98.99%, 
and specificity of 99.79% were obtained to classify grade 
I glioma. In the normal cases, almost all cases have iden-
tified correctly with high accuracy of 99.72%.

Discussion

In this meta-analysis, of the performance of DL-based 
algorithms in the segmentation and classification of MRI 
images in cases with HNCs and/or brain tumors were eval-
uated. Of the 109 related articles, 30 eligible studies were 
considered for this meta-analysis. Based on the analyzes 
performed on the selected studies, for the segmentation 

Fig. 2  Box plot results of a dice score; b sensitivity; and c specificity of auto-segmentation versus ground-truth for each tumor region

Table 2  Results of auto-segmentation versus ground-truth for each tumor region in different views

Dice coefficient Sensitivity Specificity

Multi-view Axial Coronal Sagittal Multi-view Axial Coronal Sagittal Multi-view Axial Coronal Sagittal

Complete tumor 0.831 0.815 0.815 0.797 0.836 0.817 0.785 0.811 0.853 0.834 0.792 0.738
Core tumor 0.73 0.699 0.698 0.702 0.734 0.729 0.77 0.723 0.785 0.76 0.714 0.746
Enhanced tumor 0.63 0.622 0.622 0.589 0.698 0.686 0.663 0.716 0.611 0.611 0.617 0.54

Fig. 3  Bar chart results of a dice score; b sensitivity; and c specificity of auto-segmentation versus ground-truth for each tumor region in axial, 
coronal, sagittal, and fusing views
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of HNCs and brain tumors, the dice coefficient, sensitiv-
ity, and specificity were examined, and the results show 
the high capability of DL-based methods in the complete 
tumor, tumor core, and enhanced tumor. The performance 
of DL models for the segmentation of HNCs and brain 
tumors is reduced from complete tumor to tumor core and 
enhanced tumor, respectively. Besides, the efficiency of 
segmentation was evaluated for complete tumor region 
based on JSC, ASSD, PM, and CR metrics in four studies. 
These parameters have not been reported in other studies, 
but can be used to evaluate the efficiency of segmentation 
methods.

The study also examined the performance of segmenta-
tion methods using DL in determining the grade of glioma 
based on different metrics. The necessary information for 
this analysis was not available in all studies; therefore, this 
issue has been investigated in some studies. The studies were 
compared based on the views of images used for segmenta-
tion, and the results were reported based on the dice coef-
ficient, sensitivity and specificity. The results mainly show 
that the values obtained for different views are close and in 
descending order for the complete tumor, tumor core, and 
enhanced tumor, respectively.

The accuracy for classifying glioma, meningioma, and 
pituitary tumors by DL methods is more than 96%. These 
values for the sensitivity and specificity of the DL methods 
are also more than 93% for tumor-type classification. The 
values of accuracy, sensitivity, and specificity were also 
examined for the classification of tumor grades, which indi-
cate the significant ability of automated methods based on 
DL. Due to the considerable ability of DL methods in the 
studied fields, some of the challenges and capabilities of 
these methods will be reviewed in the following.

Based on extensive studies, DL approaches have revo-
lutionized the various fields of medical image processing 

and analysis. In many applications related to the classifica-
tion and segmentation of medical images, DL approaches 
work better than other traditional methods [62, 63]. DL also 
facilitates the process of image analysis by automatically 
extracting features from images instead of extracting hand-
crafted features. However, one of the major challenges in 
applying these approaches is the need for large amounts of 
data due to the multiplicity of parameters to be learned in 
deep neural networks. This large amount of data must also 
be labeled, which requires a time-consuming process to pro-
duce the labels. To address these challenges, researchers in 
the field of machine learning have made efforts to use data 
augmentation techniques or transfer learning.

Data augmentation refers to the concept in which the 
number of images is increased using various approaches 
such as translational changes, rotation, mirroring, optical 
transforms, and other methods of image processing, or meth-
ods based on generative adversarial networks (GANs) [64]. 
Transfer learning is also a concept that uses a neural network 
that has been previously trained for similar applications, and 
this network must then be fine-tuned using available data 
[65]. Using domain adaptation approaches can also greatly 
solve the problem of the need for labeled data [66]. There-
fore, using these methods can improve the performance of 
DL approaches.

Conclusion

In this meta-analysis, some studies related to the use of 
DL methods in segmentation and classification of HNCs 
and brain tumors in MRI images were evaluated. Based on 
the obtained results, we can acknowledge the significant 
ability of DL methods in the mentioned applications. Pay-
ing attention to the strategies such as data augmentation, 

Fig. 4  Confusion matrices for classification of tumor by a type; b low-grade (Ι and ΙΙ grade) and high-grade (ΙΙΙ and ΙV grade); and c Ι, ΙΙ, ΙΙΙ, 
and ΙV grades of auto classification versus manual classification
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transfer learning, and domain adaptation can increase the 
performance of DL-based segmentation and classification 
methods, and handle challenges related to DL such as 
limited annotated data, overfitting, class imbalance and 
so on. We do believe that this paper can help researchers 
interested in this field to choose a suitable DL model and 
method of defining the study methodology and show the 

main challenges of this field and ways to deal with them. 
Poor reporting in these studies challenges the analysis 
process, so it is recommended that future studies report 
comprehensive results based on different metrics.

Supplementary Information The online version contains supplemen-
tary material available at https ://doi.org/10.1007/s1154 8-021-02326 -z.

Fig. 5  aSROC curve for diagnostic accuracy of DL in discrimination 
of glioma from meningioma and pituitary tumors; Fagan’s nomogram 
with b 25% pretest probability; c 50% pretest probability; d 75% pre-

test probability. Summary receiver operating characteristic (SROC), 
sensitivity (SENS), specificity (SPEC), area under the curve (AUC), 
probability (Prob), likelihood ratio (LR)
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