Assessment Effects of Resveratrol on Human Telomerase Reverse Transcriptase Messenger Ribonucleic Acid Transcript in Human Glioblastoma

(2017) Assessment Effects of Resveratrol on Human Telomerase Reverse Transcriptase Messenger Ribonucleic Acid Transcript in Human Glioblastoma. Advanced biomedical research. p. 73. ISSN 2277-9175 (Print) 2277-9175 (Linking)

Full text not available from this repository.

Abstract

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive brain tumor, which has a poor prognosis despite the advent of different therapeutic strategies. There are numerous molecular biomarkers to contribute diagnosis, prognosis, and prediction of response to the current therapy in GBM. One of the most important markers that are potentially valuable is immortalization-specific or immortalization-associated marker named "hTERT messenger ribonucleic acid (mRNA)" the key subunit of telomerase enzyme, which is expressed in more than 85 of cancer cells, in spite of the majority of normal somatic cells. In this study, we investigated the effects of resveratrol (RSV) on this mRNA marker level, leading to cancer progression. MATERIALS AND METHODS: U-87MG cell line was obtained from Pasteur Institute of Iran and treated with various concentrations of 0-160 mug/mL of RSV and at different time points (24, 48, and 72 h). To evaluate viability of U-87MG cells, standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed. Real-time polymerase chain reaction (RT-PCR) was used for comparative and quantitative assessment of human telomerase reverse transcriptase (hTERT) mRNA copy number versus control-untreated group. RESULTS: The results of our investigation suggested that RSV effectively inhibited cell growth and caused cell death in dose-dependent (P < 0.05) and not in time-dependent manner (P > 0.05), in vitro. Interestingly, quantitative RT-PCR analysis demonstrated that at half inhibition concentration, RSV dramatically decreased mRNA expression of hTERT, the catalytic subunit of telomerase enzyme, which leads to prevention of cell division and tumor progression. CONCLUSION: With regard to downregulation of this immortalization-associated marker, RSV may potentially be used as a therapeutic agent against GBM.

Item Type: Article
Keywords: Glioblastoma human telomerase reverse transcriptase messenger ribonucleic acid resveratrol
Divisions: Research Institute for Primordial Prevention of Non-communicable Disease > Pediatric Inherited Diseases Research Center
Page Range: p. 73
Journal or Publication Title: Advanced biomedical research
Journal Index: Pubmed
Volume: 6
Identification Number: https://doi.org/10.4103/2277-9175.209047
ISSN: 2277-9175 (Print) 2277-9175 (Linking)
Depositing User: مهندس مهدی شریفی
URI: http://eprints.mui.ac.ir/id/eprint/1428

Actions (login required)

View Item View Item