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Abstract

Up to now, polyoxometalates (POMs) have shown encouraging anti-tumor activities. Unfortunately, the
general toxicity with a fateful characteristic has prevented their further clinical application as inorganic
drugs. In this study, we synthesized tocopherol succinate-polyoxomolybdate conjugate (T,POMOo) as a
new organic-inorganic hybrid and evaluated its characteristic in-vitro to introduce a safer and more potent
POM derivative in the scope of cancer treatment. We synthesized the hybrid via a simple amidation
reaction between POMo and tocopherol succinate (TS) using the carbodiimide strategy. The structure
was approved by FTIR and HNMR spectroscopy besides the other techniques. The anti-cancer activity
was studied on breast cancer cell (MCF-7) and prostate cancer cell (LNCAP) using MTT method and
normal cell non-toxicity was checked on Human umbilical vein endothelial cell (HUVEC) using the same
protocol, and the flow cytometry technique was used to investigate the apoptosis. The cytotoxicity
studies on the breast cancer cell line (MCF-7), prostate cancer cell line (LNCAP) and human umbilical vein
endothelial cell (HUVEC) showed that the presence of tocopherol succinate could change and modulate
the potency of the final hybrid (IC50 of 167.3 mg/mL on MCF-7 & 234.1 mg/mL on LNCap respectivley).
The results showed more cytotoxicity compared to the parent POMo for T2POMo conjugation on
cancerous cells besides no significant cytotoxicity on normal cells. The flow cytometry results showed
that the hybrid conjugation could result in a significant increase in apoptosis (60.88%). So tocopherol
succinate bioconjugate of POMo as a novel and potent bioactive POMo could be a promising candidate
for further pre-clinical assessments.

Introduction

Based on the World Health Organization (WHO), cancer is the name of a group of diseases associated
with abnormal cell growth and the potential to attack other parts of the body and one of the leading
causes of million deaths worldwide. It was responsible for more than 9 million mortalities in 2018,
especially in low to middle-income countries (1).

All of the chemotherapy drugs suffer from some drawbacks, such as high price, numerous side effects,
and low bioavailability (2). Thus, it has always been fascinating to find new cytotoxic agents to overcome
these limitations by replacing previous drugs in the clinic.

Polyoxometalates (POMs), macroanionic clusters, are chemical structures with early transition metals in
which the metal ions in their highest oxidation states are linked together through an oxygen bridge (3).
They have been studied in various fields, such as catalysis, material science, pharmaceutical science,
medicine, and biosensors because of their unique properties and reactivity (4). During the last decades,
POMs have attracted much attention in pharmaceutical research as therapeutic agents like anti-cancers,
antibiotics, antivirals, etc. It seems that due to their low price of preparation, simple synthesis, easy
modification, and other eminent characteristics, they have a unique chance for being considered as drugs
in the future.
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Many reports on the anti-cancer activity of POMs and their organic hybrids regardless of the structure,
identity, and chemical composition of POMs are available. Even because of their unique potency in this
regard, they were introduced as the next generation of metallodrugs by Bijelic et al (5).

Yamase published the first report on the anti-cancer activity of POMs in 1988 around anti-tumor activity
(NH3Pri)(Mo7024) polyoxometalate animal transplantable tumors and human cancer xenograft (6). Still,
in the late 20th century, the anti-cancer studies reported by the Sabarinathan team (7) on silicotungstate
cluster coordinated organic-inorganic hybrid material [Cu(dmbpy)]2 [SiW12040]-8H20, and Li et al. (8) on
Keggin-type rare earth-containing (POMs) specifically in 2019 and 2020 showed the appeal of this
research area.

Despite these excellent studies, two significant problems have remained in this regard that impede the
clinical application of POMs in cancer therapy; first, compared to other anti-cancer drugs, with an
inhibitory concentration (IC50) in the nanomolar range, relatively large quantities of POMs are needed to
initiate the anti-cancer effect in-vitro and in-vivo. Second, the cytotoxicity in healthy cells and side effects
of POMs as a drug should be considered by either increasing the cell-selectivity through targeting
strategy, or conjugation to bioactive molecules (3, 9).

Molecular hybridization is expected to open up new interdisciplinary perspectives in medicinal chemistry
(10), in most cases, the hybrid compounds benefit from integrating the biological effects of their
components. In this regard, combining different pharmacophores, organic or inorganic substructures, is
possible with an appropriate rationale to get the desired outcomes.

Hybridization strategy, and specifically the covalent modification, seems to be a valuable strategy to
control the inherent cytotoxicity of POMs. This strategy offers additional advantages, including better
biological stability and in some cases, better selectivity in POMs (11-13). In this regard, hybridization with
some specific bio-molecules, such as peptides, vitamins, proteins, and other bio-ligands have created
more research appeal in this kind of cytotoxic agents.

Some of the recent papers on the subject of anti-cancer activity of organic or biological hybrids of POMs
are as follows; Boulmier et al in 2017, reported the anti-cancer activity of a series of polyoxometalate-
bisphosphonate complexes containing Mo(VI)O4 octahedra, zoledronate, or an N-alkyl zoledronate

analog, in their structures Mn was heterometal. They found promising activities against human non-
small cell lung cancer (NCI-H460) cells with IC50 values for growth inhibition of ~5 pM per
bisphosphonate ligand (14).

Hosseini et al. in 2020 reported the cytotoxicity of biotin-conjugated manganese polyoxomolybdate on
MCF-7 cell line (IC50; 0.082 mM), and HepG2 cell line (IC50; 0.091 mM). Meanwhile, they approved the
lower cytotoxicity on the HUVEC cell line (15).

Ventura et al. in 2018, reported functionalization of the Anderson-Evans polyoxomolybdate
(IMnMo6024]37) with a Bombesin antagonist peptide. They studied the anti-cancer activity of this
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conjugation against MCF-7, and Hela cell lines, in both cytotoxicity they found IC50 about 75 nM (12).

Vitamin E is well-known as a lipophilic vitamin with anti-oxidant activity, which has also been
demonstrated to lower the cancer risk (16). Vitamin E has eight varieties, four tocopherols (a-, -, y- and &-
tocopherols) and four tocotrienols (a-, B-, y-, and &-tocotrienols), that are particularly promising candidates
for the synthesis of anti-cancer hybrid conjugates (17). a-tocopherol is a significant variant of vitamin E
with unique features (18), some of the previous studies revealed that high-dose (100 M) a-tocopherol,
inhibited cell proliferation in ER+ breast cancer, including MCF-7 and T47D cells, in a dose-dependent
manner (16, 19).

Among all vitamin E derivatives with unique characteristics, it has been demonstrated that a- tocopherol
succinate (TS) can inhibit the proliferation rate of various cancers in vitro and in vivo (17). Some recent
studies have also revealed that a-TS has anti-cancer activities in various hormone-dependent breast
cancers, and even such as MCF-7, MDA-MB-435, 4T1, and MDA-MB-453 cells (16). Furthermore, TS has
proven its synergistic effects when it has been used with other therapeutic agents in clinic, in vitro, and in
vivo studies (20, 21).

Herein, for the first time following our recent studies and interests, we aimed to evaluate the synergistic
effect of a-TS on the cytotoxicity of an Anderson type polyoxomolybdate (POMo). So, T2POMo
conjugation was synthesized using amide covalent bonds, and the cytotoxicity of this novel conjugation
was studied on two types of cancerous cell lines besides the normal cells by MTT assay. Furthermore, the
apoptosis value was studied quantitatively using Annexin V/propidiumiodide (PI) kit.

Experimental Section

- Materials

All reagents and solvents were purchased commercially and used without further purification unless
specially noted. We used Ultrapure Milli-Q water in all experiments. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT), tetrabutylammonium bromide (TBAB), tris-(hydroxymethyl)
aminomethane, N-hydroxysuccinimide (NHS) and 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)
were purchased from Sigma company. Fetal bovine serum (FBS) was purchased from Gibco (Life
Technologies AG, Switzerland). Dulbecco's modified Eagle's medium (DMEM) and RPMI- 1640 without
folic acid were from Invitrogen Corporation. The breast cancer cell (MCF-7), LNCaP cells (androgen-
sensitive human prostate adenocarcinoma cells), and Human umbilical vein endothelial cells (HUVECs)
cells were provided from the national cell bank, Pasteur Institute of Iran, and cultured in DMEM
(supplemented by 10% FBS). Other remaining chemicals and reagents with required quality were
purchased from local vendors.

- Synthesis of Compounds
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Synthesis of POMo, the synthesis of POMo was achieved in two steps from sodium molybdate and
manganese acetate precursors on the basis of our previous study (22).

Step 1: Synthesis of [TBA],[a-MogO,¢], (POM-1)

Briefly, a solution of sodium molybdate dihydrate (NaMo00,.2H,0) (2.50 g, 10.35 mmol) in 6 mL of water
was acidified with 6.0 N HCI while stirred vigorously for about 2 mins at an ambient temperature. An
aqueous solution of TBAB (1.67 g, 5.20 mmol) was then added to the above solution, white precipitates
that were immediately formed were collected and washed respectively with water, ethanol, acetone, and
diethyl ether. The product was dissolved in the minimum amount of acetonitrile and stored at-10 °C
around 30 h. The bright, colorless, block-shaped crystals were collected and washed with deionized water,
ethanol, acetone, and diethyl ether, respectively. The obtained crystals were dried in the vacuum oven
overnight, the yield was about 75% based on NaMo04 (23).

Step 2: Synthesis of ([TBA];[MnMog04g ((HOCH,)3CNH,),]); POMo

A mixture of POM-1, Mn(0OAc)3.2H,0, and (HOCH,);CNH, (24) (24) was refluxed for 16 h in acetonitrile.
The orange solution was cooled to room temperature and filtered to remove impurities, and the orange
filtrate was exposed to the diethyl ether for several days (5 days). The POMo was obtained as large
orange crystals, were filtered and washed with a small amount of cold acetonitrile and diethyl ether, and
then dried in the vacuum (25).

Synthesis of Tocopherol succinate POMo conjugate (T,POMo)

a-Tocopherylsuccinate (TS) was synthesized based on the procedure reported by Mai et al. (26), by the
reaction of a-Tocopherol and succinic anhydride. TS (0.25 g, T mmol), was first activated in the presence
of NHS (0.12 g, 1.04mmol) and EDC (0.19 g, 1.20 mmol) in anhydrous DMF/CH3CN, the conjugation
between TS and the amine moieties of POMo (0.94 g, 0.5 mmol) was carried out in the presence of
catalytic amount of triethylemine for 48 hours in a room temperature. The T2POMO bio-conjugation was
precipitated by adding diethyl ether, filtered and further purified by acetone and water to remove residual
impurities and finally pure product was obtained from acetonitrile (27). The final conjugation was
characterized by FTIR, THNMR, and UV-Vis. Spectroscopy, as well as CHNS analysis.

e T,POMo Stability study

For this purpose, a solution of T,POMo (40 ug / mL) was prepared at pH=7.4 in PBS-0.3% DMSO (as
close as possible to cell culture media) as reported by Geisberger et al (28). Upon mixing with PBS, the
clear solution was retained. The solution was scanned immediately, after 24h, after 48h, and after 72h by
UV-Vis spectrophotometer.

- In-vitro Cell Viability Assay
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The cells were cultured in a standard condition of 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin at 37°C in an atmosphere of 5% C02, then were retained in RPMI-1640 (GIBCO) medium for
following cytotoxicity evaluation using MTT protocol (29). Typically, stock solutions were prepared in the
concentration of 500 mg/mL in phosphate-buffered saline (PBS) (pH 7.4). Cells in a density of 5103 per
well were seeded, then incubated in the same condition as culturing step for 24 h. Different
concentrations of POMo, TS, and T,POMo (ranging from 50, 100, 200, 300, and 400 pg/mL) were treated
regularly on MCF-7, LNCAP, and HUVEC Cells plates. After incubating for 24 h, the medium was removed
and 20 pL of MTT solution (5 mg/mL) was added to each well, and incubation was continued for 4h.
After that, the medium was replaced with 150 yL DMSO to solubilize the purple formazan precipitates,
and the absorbance was read using a microplate reader at 570 nm. The cell viability was calculated using
the following equation;

Cell Survival % = &t=25) + 100
(ﬁc_ﬂb]

in which A;, A, and A, represent mean absorbance of the treatment, blank and negative control,

respectively (30). For each treatment, the average of 9 runs was considered, and results were given as
Mean + SD.

- Hemolysis assay

The hemocompatibility of POMo, and T,POMo were evaluated using a procedure reported by Shi et al
(31). Briefly, 1 mL of fresh rat blood was centrifuged at 3000 rpm for about 15 min and precipitated RBCs
were isolated and rinsed thoroughly with PBS solution for purification, and stored properly. The hemolysis
test solutions of POMo and T2POMo, were prepared by adding 40 mL of RBCs to 960 mL of PBS
solutions of test groups in different concentrations. The test concentrations were in the range of 50 to
400 mg/mL, the samples were incubated at 37 °C for 6h. After that, the dispersions were centrifuged
(3000 rpm, 20 min), and the supernatant was evaluated by UV-visible spectroscopy at 540 nm. The
ionized water and PBS were respectively used as positive and negative controls, and the hemolysis ratio
was calculated using the following equation:

o An)

(A, X 100
(Ap o An)

Hemolysis ratio (%) =

In which; A, A, and A, refer to absorption of test group, absorption of negative control, and absorption of
positive control respectively.

- Flow cytometry analysis of cell apoptosis
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To approve the apoptosis pathway, the binding proportion of annexin V and propidium iodide uptake was
checked using a phosphatidyl serine detection kit (IQ product, Netherlands). In this regard, MCF-7 cells
were seeded in a 12-well plate with a density of 10 cells/well and incubated for 24 h at 37 °C. POMo and
T,POMo solutions with a concentration of 200 mg/mL were treated on cells and incubation was followed
for the next 24 h in the same condition. After that, the cells were washed three times with cold PBS and
then harvested using Trypsin. To evaluate the apoptosis ratio, the cells were doubled stained with
Annexin-V-FITC and Pl respectively according to the manufacturer's proposed procedure and incubated in
the dark for 15 min in a room temperature, and analyzed using FACS Calibur flow cytometer. Only single
cells were gated for fluorescence analysis (32).

- Statistical analysis

All of the data was analyzed using one-way ANOVA using SPSS software (version of 21) followed by
student t-test to evaluate the difference between groups, or by Post Hoc LSD test for more than two
groups. The p,,,e lower than 0.05 considered as a significant difference between averages.

Results And Discussion

- Synthesis of compounds

[TBA],[a-Mog0,¢] (POM-1) was synthesized as the basis for POMo according to the previous reports
without any difficulty, after addition of Mn(OAc); and TRIS subunits, [TBA];[MnMog04g{(0CH,)3CNH,},]
(POMo) was isolated as orange crystals in 80% yield from POM-1 according to the previous reports (25) .
The reaction of tocopherol succinate with both ends of POMo led to the final conjugation T,POMo as a
pale orange powder (figure 1).

Since the synthesis and the characterization of Anderson type polyoxomolybdates (POM-1 & POMo) were
previously reported, so in this study, the spectral data (THNMR, FTIR), elemental analysis (CHNS), and
XRD pattern were compared with those were reported earlier (25) to ensure about the accurate synthesis
of required polyoxometalate subunit. The FTIR, THNMR, CHNS data for POM-1 and POMo are as follow,
and the XRD pattern for POMo in compared to that report by Marcoux et al. has been provided in figure 2.
As it can be seen, the similarity between two patterns of prepared POMo and that retrieved as standard
XRD is definite.

[TBAl4[a-MogO,¢] (POM-1); FTIR (KBr): n (cm™") 3445 (w, br), 2968(s), 2938 (s), 2875 (s), 1615 (w), 1473
(s), 1371(m), 1339 (w), 1149 (w), 957 (s), 928 (s), 910 (s), 862 (s), 810 (s), 663 (s), 562 (w), 505 (w), 413
(w).

[TBA]3[MnM06018(24)2] (POMo); FTIR (KBr): n (cm-1), 3448 (w, br), 2960 (s), 1479 (s), 1040 (s), 939 (s),
917 (s), 900 (s), 663 (s); TH-NMR (400 MHz, DMS0-d6): 0.94 (t, 36 H), 1.32 (m, 24 H), 1.57 (m, 24 H), 3.12
(m, 24 H), 61.8 (s, 12 H); Elemental analysis: calculated for C5¢H{,4MNnMogN50,,4: Elemental Analysis: C
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35.73, H6.64, Mn 2.92, Mo 30.59, N 3.72; found experimentally C 35.70 %, H 6.75%, N 3.61, Mn 2.86%, Mo
30.28%; UV-Vis. (CH3CN): e/,ax 220, 254, 356 nm.

The structure of (T,POMo) were characterized by "THNMR spectroscopy, FTIR spectroscopy, and CHNS
elemental analysis as well as UV-vis. spectroscopy, the results are as follow:

T,POMo bio-conjugate;

FTIR (KBr): n (cm™") 3489 (w, br), some medium weight bands below 3000 cm™, 1741.8 (m, ester C=0 of
TS), 1688.7 (m, newly formed amide C=0), 1479 (m), 1041 (s), 939 (s), 917 (s), 662 (Ss).

TH-NMR (400 MHz, DMSO-d6): 0.96 (t, 36 H, POMo), 1.32 (m, 24 H, POMOo), 1.56 (m, 8 H, TS), 1.69 (m, 4H,
TS), 1.72 (m, 24 H, POMo), 3.16 (m, 24 H, POMo0), 3.34-342 (m, 6 H, TS), 4.15 (s, 2H, TS), 4.30 (s, 2H, TS),
6.38 (m, 4H, TS), 9.38 (bs, 2H, newly formed amide NH), 61.60 (s, 12 H, POMo);

Elemental analysis:

calculated for C195Hy30MNMogN5035: C, 50.36 %; H, 7.97 %; N, 2.41 %; Mn, 1.89 %; Mo, 19.79 %
found experimental C, 50.10 %; H, 8.05 %; N, 2.49 %, Mn, 1.81 %; Mo, 19.65 %.

UV-Vis. (CH3CN): 207, 224, 256, 293, 388 nm.

Based on the available reports, six edge-sharing MoOg octahedral are arranged around a core of the
MnOg unit, making the Anderson structure. The TRIS are bound to the Mn(lll) ion in the core via its alkoxy
groups, so two amine groups of TRIS are oriented to outside of POM and are available for further
modification The organic groups cover both sides of the planar hexagon through the chemical bonding to
the amine groups of TRIS (25).

As can be seen in Figure 1, we used both amine groups of POMo for the functionalization with TS. The
amidation reaction between the carboxylic acid of TS with POMos was carried out through the
carbodiimide strategy using EDC/NHS (33). Purification through precipitation afforded the final product
with a relatively high yield. The chemical structure of the T,POMo conjugation was confirmed by
elemental analysis, FT-IR spectroscopy, and '"H NMR spectroscopy. With an in-depth look at FTIR spectrun
(figure 3) of final conjugation compared to the POMo, we find some changes after the conjugation, for
example, N-H stretching frequency has increased to some extent from 3448 cm™ to 3489 cm™, the
carbonyl group stretching frequency moves from 1719 cm™ in TS to 1688 cm™ in T2POMo due to the
conjugation, we also see the primarily ester band of TS in the related place around 1741 cm™. Finally,
some spectral details related to TS have been appeared in corresponding area in final conjugation
spectra. Furthermore, we can see the characteristic bands of Anderson-type POMo in proper regions
around 939.2,917.7, and 662.8 cm™' respectively after conjugation with TS. These IR proofs undoubtedly
supported the correct amide formation between TS and POMo.
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The data of "THNMR of T2POMo is the best complementary one, the all fundamental signals of TBA and
TRIS in the POMo scaffold are relocated intact in T,POMo. As shown by Marcoux et al. (25), because of
strong electron-withdrawing identity of POM, its methylene protons (belong to TRIS) are appeared around
60-62 ppm in "THNMR spectra with the right signal ratio to other related peaks. Along characteristic
signals of TS and POMo, the signal of NH amide was correctly appeared around 8.6 ppm with the exact
signal ratio to the POMo CH2 moieties around 61 ppm (as shown in figure 4). Based on these spectral
proofs, the conjugation of two nolecules of TS to POMo scaffold was approved initially. The best
complementary evidence was obtained from elemental analysis, according to these results and
comparing with theoretical values, the chemical structure and formula were approved finally (25).
Furthermore, UV-vis. spectroscopy (figure 5), showed the characteristic bands for both of TS and POMo
accordingly, it seems that upon the conjugation, the shape and details of the spectrum have changed
completely in comparison to its sub-groups (TS & POMo). The general shape of the bio-conjugate
(T2POMo) spectrum confirms the combination of the two components as well. There are some small
changes in maximum absorption wave length of components which are in line with those reported by
others for hybrid organic-inorganic conjugations (34).

o Stability of T,POMo conjugate

Before in vitro cytotoxicity evaluation, the stability of the T2POMo conjugation should be checked in the
same condition as MTT assay protocol. In this regard, the stability of T2POMo conjugation was analyzed
using the UV-Vis. spectrum of the dissolved sample after specified times (instantly, 24h, 48h, and 72h
after) (35, 36).

The UV/vis spectrum of T2POMo in PBS (Figure 6) clearly indicates its stability around neutral pH
conditions through monitoring of the characteristic of POM absorption bands, i.e.

The characteristic of T2POMo absorption bands did not undergo significant changes at any wavelength
over a period of 3 days. These results agree well with the previously observed stability which was
reported by Geisberger et al (28).

In vitro Cytotoxicit Assessments (MTT assay)

To study the effect of TS conjugation on the cytotoxicity profile of POMo in final product, two cancer cell
lines comprising MCF-7 and LNCAP were selected due to their relatively high level of tocopherol receptor
on them based on previous reports (37, 38). The cells were treated with different concentrations ranging
from 50 — 400 mg/mL of TS, POMo and T2POMo. Furthermore, the normal cell cytotoxicity was
evaluated on human umbilical vein endothelial cells (HUVEC) in the same way using a concentration of
400 mg/mL.

The results of in vitro cytotoxicity for the final conjugation (T2POMo) in comparison to the POMo and TS,
on the MCF-7, LNCAPR and HUVEC cells are presented in figures (7, 8 and 9). Figure 7 represents the
cytotoxicity profile of T,POMo in two different incubation times and different concentrations on MCF-7
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cell line. As it can be seen, the cytotoxicity profile is fully time and dose responsive (p<0.05 for each
comparing). Based on these initial results, we selected the 24h for incubation time and the comparative
cytotoxicity of POMo and T2POMo have been evaluated on both of MCF-7 and LNCaP cell lines (figure
8). Eventually, Figure 9 represents the comparative cytotoxicity of POMo and T,POMo on the HUVEC
normal cells.

Previous reports have been repeatedly referred to the anti-cancer properties of TS, and the synergistic
effects of TS on the cytotoxic properties of some anti-cancer drugs and agents (17). So it seems that TS
is a good candidate for enhancing the anti-cancer properties and based on these studies, TS was selected
to bind to polyoxomolybdate.

As can be deduced from figure 8 (up), T2POMo exhibited considerably a better growth inhibition effect on
MCEF-7 cells compared to POMo and TS. The IC50 of the T2POMo and POMo on MCF-7 were 167.3
mg/mL and 321.7 mg/mL respectively. On the other hand, both of POMo and T2POMo showed
somewhat less cytotoxic effects on LNCAP (figure 8 down), the IC50 of T2POMO and POM on the LNCAP
were respectively 234.1 mg/mL and 382.2 mg/mL estimated. The better detected activity on MCF-7 could
be attributed to the higher value of tocopherol responsivity in this type of cells as human protein atlas
implied (39).

However, the complementary and adjuvant effects of TS on the cytotoxicity effects in both cell lines are
well evident and the main hypothesis of this study seems to be confirmed.

The second hypothesis of this study was to reduce the cytotoxicity effects on HUVEC normal cells, which
is confirmed by the results of normal cell line (figure 7).

The protective effects of tocopherol, mentioned earlier (40), appear to help reduce toxicity on the normal
cell line. The cytotoxicity of T2POMo and POMo were evaluated on the HUVEC cells at the concentration
of 400 mg/mL, which was high enough to see the cytotoxic effects. Interestingly, we did not get any
considerable cytotoxicity on HUVEC in comparison to the positive control (cis-platin) at the same
concentration for T2POMO. As seen in Figure 8, both POMo and T2POMO have higher cell viability
compared to the cis-platin at the same concentration (* and $ mean significant difference between each
groups and positive control), and this effect is recognized much profoundly in the case of T2POMo
comparing Cis-Platin (p,4,e < 0.05). Furthermore, there are significant difference between all treating

groups and control group with 100% of viability (@ means significant difference with control).

The more cytotoxicity of T2POMo compared to the POMo, can be a result of the inherent toxicity of the
POMo, besides its facilitated cell entry through tocopherol receptors. In other words, the cytotoxicity of the
T2POMo was improved by higher cell endocytosis of the conjugation through the tocopherol receptors.
Although the cellular behavior of T2POMo is not precisely apparent, we find the better activity of the
conjugation against the MCF-7 cancerous cells than the LNCAP ones. This lower effect on LNCAP cell
lines can be explained by the lower expression level of tocopherol-binding proteins on LNCAP cells, or
probably, the lower sensitivity of the LNCAP cells compared to the MCF-7 cells in the culturing process or

Page 10/15



other intracellular mechanisms that are predominant in MCF-7 cells relative to the LNCAP ones. Based on
the evidence obtained from the Human Protein Atlas database, the MCF-7 tumor cells have more
expression of the tocopherol-binding protein (HLCS gene) than the prostate tumor cells; then, we can
attribute the observed results to this fact (41).

-Hemolysis assay

The evaluation of possible toxicity in red blood cells (RBC), with measuring the rate of hemolysis, is the
best initial biological assay among the different cytotoxicity assays. This essay is based on red cell
membrane rupturing in the presence of any xenobiotic. RBC are the main cells in blood circulation which
xenobiotics encounter initially following intravenous injection. Thus, any interruption in the membrane of
RBC would certainly disrupt their vital function, and could be lethal (42). The haemolytic activity of the
POMo and its bioconjugation T,POMo (figure 9) was evaluated in erythrocytes from rat employing
standard methodology. The subsequent release of haemoglobin was used to assess haemolytic activity
as the function of concentration, with concentrations ranging from 50 to 400 ug/mL. Based on obtained
results, in all concentrations, the T,POMo conjugation is significantly safer (Pvalue <0.05) than the POMo
even at 400 mg/mL. This safety is profoundly apparent in higher concentrations, and as it can be seen
even at a concentration of 400 mg/mL the total percent of hemolysis is still below 5 percent in the case
of T,POMo which is the promising outcome (31). It seems that for both POMo and T,POMo the best

concentration for being safe to RBC is 200 mg/mL.
-Apoptosis quantification using flowcytometry protocol

To quantify the cell apoptosis, MCF-7 cells (the better cytotoxic effects were obtained on it) were treated
with the same concentration of both POMo and T,POMo (200 mg/mL), incubated for 24h, and finally
were stained by Annexin V/propidiumiodide (Pl). The Annexin V binds to cells in early apoptosis stage,
which can be used as a very specific apoptotic marker and Pl stains cells in late apoptosis and dead cells
(43). The results have been shown in figure 10, the upper left quadrant shows the percent of necrosis in
cell death, the upper right shows late apoptotic cells, the lower left shows normal alive cells and the lower
right quadrant shows the cells in early apoptosis stage. The results showed that the proportion of
apoptotic cells (in early and late phase) increased by the addition of POMo and T2POMo to 36.56%, and
60.88 % respectively. The proportion of late apoptotic cells induced by the T,POMo is significantly higher
than the POMo (18.36 % vs. 5%), and more profoundly increased regarding the control group (2.88%).

So, it can be concluded that the conjugation of TS to the POMo improved the cytotoxicity of POMo
through the valuable mechanism of programmed cell death. The same results have been reported by
peers in this area (32).

Finally, as Zamolo et al. have stated, this approach provides an efficient cytotoxic bioactive inorganic
agent and paves the way to bio-functionalization of the POMs for bio-recognition, cell internalization and
biomimetic catalysis (44).
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This result always is promising for a new cytotoxic compound, reducing the side effects or improving the
biocompatibility accompanying by the better cytotoxicity profile.

Conclusion

Achieving new cytotoxic agents with improved effects compared to previous generations has always
been the focus of chemists in the field of medicine. Polyoxometalates are considered as the next
generation of inorganic anti-cancer compounds, so designing and the synthesis of hybrid conjugations of
these compounds using bioactive molecules can be a promising path for further development. In this
study, a new generation of polyoxomolybdate hybrid conjugation was evaluated. Preliminary in vitro
cytotoxicity results showed that polyoxomolybate conjugation with tocopherol succinate could increase
cytotoxicity on cancer cells and reduce cell toxicity on normal healthy cells. Also, it seems that tocopherol
can facilitate the entry of polyoxomolybdate into the cell and besides create synergistic anti-cancer
effects.

This synergistic effect can be related to the targeting ability of the tocopherol and the intrinsic
cytotoxicity of the POMo. As a complementary fact, the designed hybrid conjugation of
polyoxomolybdate and tocopherol succinate showed a significantly improved apoptosis compared to
peer polyoxomolybdate which is the valuable outcome of this study.

Our preliminary findings in this study convinced to continue to synthesis bioactive POMs with enhanced
anti-tumor properties.
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