Feasibility of 18-MV grid therapy from radiation protection aspects: unwanted dose and fatal cancer risk caused by photoneutrons and scattered photons

(2022) Feasibility of 18-MV grid therapy from radiation protection aspects: unwanted dose and fatal cancer risk caused by photoneutrons and scattered photons. Comput Methods Programs Biomed. p. 106524. ISSN 0169-2607

Full text not available from this repository.

Abstract

PURPOSE: Photoneutron production is a common concern when using 18-MV photon beams in radiation therapy. In Spatially Fractionated Grid Radiation Therapy (SFGRT), the grid block in the collimation system modifies the neutron production, photon scattering, and electron contamination in and out of the radiation field. Such an effect was studied with grids made of different high-Z materials by Monte Carlo simulations. The results were also used to evaluate the lifetime risk of fatal cancers. METHODS: MCNPX® code (2.7.0 extensions) was employed to simulate an 18-MV LINAC (Varian 2100 C/D). Three types of grid made of brass, cerrobend, and lead were used to study the neutron and electron fluence. Output factors for each grid with different field sizes were calculated. A revised female MIRD phantom with an 8-cm spherical tumor inside the liver was used to estimate the dose to the tumor and the critical organs. A 20-Gy SFGRT plan with Anterior Posterior (AP) - Posterior Anterior (PA) grid beams was compared with a Conventional Fractionated Radiation Therapy (CFRT) plan which delivered 40-Gy to the tumor by AP-PA open beams. Neutron equivalent dose, photon equivalent dose, as well as lifetime risks of fatal cancer were calculated in the organs at risk. RESULTS: The grid blocks reduced the fluence of contaminant electrons inside the treatment field by more than 50. The neutron fluences per electron-history in SFGRT plans with brass, cerrobend and lead were on average 55, 31 and 31 less than that of the CFRT plan, respectively. However, when converting to fluences per delivered dose (Gy), the cerrobend and lead grid may incur higher neutron dose for 20 × 20 cm(2) field size and above. The changes in neutron mean energy, as well as the correlated radiation weighting factors, were insignificant. The total risk due to the photoneutrons in the SFGRT plans was 87 or lower than that in the CFRT plans. In both SFGRT and CFRT plans, the contribution of the primary and scattered photons to the fatal cancer risk was 2 times or more than the photoneutrons. The total risks from photons in SFGRT with brass, cerrobend, and lead blocks were 1.733, 1.374, and 1.260, respectively, which were less than 30 of the total photon-risk in CFRT (5.827). CONCLUSION: In the brass, cerrobend, and lead grids, the attenuation of photoneutrons outweighs its photoneutron production in 18-MV SFGRT. The total cancer risks from photons and photoneutrons in the SFGRT plans were 30 or less of the risks in the CFRT plans (5.911). Using 18 MV photon beams with brass, cerrobend, and lead grid blocks is still a feasible option for SFGRT.

Item Type: Article
Keywords: Feasibility Studies Female Humans Monte Carlo Method *Neoplasms Particle Accelerators Photons *Radiation Protection Electron contamination Grid therapy Monte Carlo Photoneutron Risk of fatal cancer Scattered photons
Page Range: p. 106524
Journal or Publication Title: Comput Methods Programs Biomed
Journal Index: Pubmed
Volume: 213
Identification Number: https://doi.org/10.1016/j.cmpb.2021.106524
ISSN: 0169-2607
Depositing User: Zahra Otroj
URI: http://eprints.mui.ac.ir/id/eprint/16738

Actions (login required)

View Item View Item