Catalytic hydrogenation of disinfection by-product bromate by cobalt and nickle prussian blue analogues with borohydride

(2023) Catalytic hydrogenation of disinfection by-product bromate by cobalt and nickle prussian blue analogues with borohydride. Korean Journal of Chemical Engineering. pp. 2876-2885. ISSN 0256-1115

Full text not available from this repository.

Abstract

As disinfection is employed extensively, disinfection by-product bromate has become an emerging environmental issue due to its carcinogenic toxicity. For developing an effective alternative approach for reducing bromate, cobalt and nickel-based Prussian Blue (PB) analogues are proposed here for incorporating a convenient reducing agent, NaBH4 (i.e., a H-2-rich reagent) for reducing bromate to bromide as cobalt and nickel are recognized as effective metals for catalyzing hydrolysis of NaBH4, and PB exhibits versatile catalytic activity. While CoPB and NiPB are comprised of the same crystalline structure, CoPB exhibits slightly higher specific surface area, more reductive surface, and more superior electron transfer than NiPB, enabling CoPB to accelerate bromate reduction. CoPB also exhibits a higher affinity towards NaBH4 than NiPB based on density functional theory calculations. Moreover, CoPB also exhibits a relatively low activation energy (i.e., 59.5 kJ/mol) of bromate reduction than NiPB (i.e., 63.2 kJ/mol). Furthermore, bromate reduction by CoPB and NiPB could be also considerably enhanced under acidic conditions, and CoPB and NiPB could still effectively remove bromate even in the presence of nitrate, sulfate and phosphate. CoPB and NiPB are also validated to be recyclable for reducing bromate, indicating that CoPB and NiPB are promising heterogeneous catalysts for reducing bromate.

Item Type: Article
Keywords: Bromate Catalytic Reduction Bromide Cobalt Nickel Prussian Blue drinking-water reductive removal enhanced catalyst activated carbon aqueous bromate metal catalyst generation hydrolysis nabh4 acid Chemistry Engineering
Page Range: pp. 2876-2885
Journal or Publication Title: Korean Journal of Chemical Engineering
Journal Index: ISI
Volume: 40
Number: 12
Identification Number: https://doi.org/10.1007/s11814-023-1445-8
ISSN: 0256-1115
Depositing User: خانم ناهید ضیائی
URI: http://eprints.mui.ac.ir/id/eprint/26501

Actions (login required)

View Item View Item