Using data mining techniques to predict chronic kidney disease: A review study

(2023) Using data mining techniques to predict chronic kidney disease: A review study. International Journal of Preventive Medicine. p. 7. ISSN 2008-7802

Full text not available from this repository.

Abstract

One of the growing global health problems is chronic kidney disease (CKD). Early diagnosis, control, and management of chronic kidney disease are very important. This study considers articles published in English between 2016 and 2021 that use classification methods to predict kidney disease. Data mining models play a vital role in predicting disease. Through our study, data mining techniques of support vector machine, Naive Bayes, and k-nearest neighbor had the highest frequency. After that, random forest, neural network, and decision tree were the most common data mining techniques. Among the risk factors associated with chronic kidney disease, respectively, risk factors of albumin, age, red blood cells, pus cells, and serum creatinine had the highest frequency in these studies. The highest number of best yields was allocated to random forest technique. Reviewing larger databases in the field of kidney disease can help to better analyze the disease and ensure the risk factors extracted.

Item Type: Article
Keywords: Classification data mining diagnosis kidney diseases machine learning diagnosis General & Internal Medicine
Page Range: p. 7
Journal or Publication Title: International Journal of Preventive Medicine
Journal Index: ISI
Volume: 14
Number: 1
Identification Number: https://doi.org/10.4103/ijpvm.ijpvm₄₈₂₂₁
ISSN: 2008-7802
Depositing User: خانم ناهید ضیائی
URI: http://eprints.mui.ac.ir/id/eprint/26692

Actions (login required)

View Item View Item