Evaluation of the effects of chitosan nanoparticles on polyhydroxy butyrate electrospun scaffolds for cartilage tissue engineering applications

(2023) Evaluation of the effects of chitosan nanoparticles on polyhydroxy butyrate electrospun scaffolds for cartilage tissue engineering applications. International Journal of Biological Macromolecules. p. 15. ISSN 0141-8130

Full text not available from this repository.

Abstract

In this study, we synthesized and incorporated chitosan nanoparticles (Cs) into polyhydroxy butyrate (PHB) electrospun scaffolds for cartilage tissue engineering. The Cs nanoparticles were synthesized via an ionic gel interaction between Cs powder and tripolyphosphate (TPP). The mechanical properties, hydrophilicity, and fiber diameter of the PHB scaffolds with varying concentrations of Cs nanoparticles (1-5 wt) were evaluated. The results of these evaluations showed that the scaffold containing 1 wt Cs nanoparticles (P-1Cs) was the optimum scaffold, with increased ultimate strength from 2.6 to 5.2 MPa and elongation at break from 5.31 to 12.6 . Crystallinity, degradation, and cell compatibility were also evaluated. The addition of Cs nanoparticles decreased crystallinity and accelerated hydrolytic degradation. MTT assay results showed that the proliferation of chondrocytes on the scaffold containing 1 wt Cs nanoparticles were significantly higher than that on pure PHB after 7 days of cultivation. These findings suggest that the electrospun P-1Cs scaffold has promising potential as a substrate for cartilage tissue engineering applications. This combination offers a promising approach for the fabrication of biomimetic scaffolds with enhanced mechanical properties, hydrophilicity, and cell compatibility for tissue engineering applications.

Item Type: Article
Keywords: Polyhydroxy butyrate Chitosan Electrospinning Cartilage Tissue engineering in-vitro antibacterial activity mechanical-properties carbon nanotubes films nanofibers cells nanocomposite proliferation degradation Biochemistry & Molecular Biology Chemistry Polymer Science
Page Range: p. 15
Journal or Publication Title: International Journal of Biological Macromolecules
Journal Index: ISI
Volume: 249
Identification Number: https://doi.org/10.1016/j.ijbiomac.2023.126064
ISSN: 0141-8130
Depositing User: خانم ناهید ضیائی
URI: http://eprints.mui.ac.ir/id/eprint/27058

Actions (login required)

View Item View Item