Barrett's Mucosa Segmentation in Endoscopic Images Using a Hybrid Method: Spatial Fuzzy c-mean and Level Set

(2016) Barrett's Mucosa Segmentation in Endoscopic Images Using a Hybrid Method: Spatial Fuzzy c-mean and Level Set. Journal of medical signals and sensors. pp. 231-236. ISSN 2228-7477 (Print) 2228-7477 (Linking)

Full text not available from this repository.

Abstract

Barrett's mucosa is one of the most important diseases in upper gastrointestinal system that caused by gastro-esophagus reflux. If left untreated, the disease will cause distal esophagus and gastric cardia adenocarcinoma. The malignancy risk is very high in short segment Barrett's mucosa. Therefore, lesion area segmentation can improve specialist decision for treatment. In this paper, we proposed a combined fuzzy method with active models for Barrett's mucosa segmentation. In this study, we applied three methods for special area segmentation and determination. For whole disease area segmentation, we applied the hybrid fuzzy based level set method (LSM). Morphological algorithms were used for gastroesophageal junction determination, and we discriminated Barrett's mucosa from break by applying Chan-Vase method. Fuzzy c-mean and LSMs fail to segment this type of medical image due to weak boundaries. In contrast, the full automatic hybrid method with correlation approach that has used in this paper segmented the metaplasia area in the endoscopy image with desirable accuracy. The presented approach omits the manually desired cluster selection step that needed the operator manipulation. Obtained results convinced us that this approach is suitable for esophagus metaplasia segmentation.

Item Type: Article
Keywords: Adenocarcinoma Barrett's mucosa algorithms cardia endoscopy esophagogastric junction fuzzy logic gastroesophageal reflux metaplasia segmentation
Page Range: pp. 231-236
Journal or Publication Title: Journal of medical signals and sensors
Journal Index: Pubmed
Volume: 6
Number: 4
ISSN: 2228-7477 (Print) 2228-7477 (Linking)
Depositing User: مهندس مهدی شریفی
URI: http://eprints.mui.ac.ir/id/eprint/3338

Actions (login required)

View Item View Item