Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes

(2018) Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes. Environmental Science and Pollution Research. pp. 24746-24763. ISSN 0944-1344

Full text not available from this repository.

Abstract

The electro-oxidation treatment of aqueous solution containing diclofenac (DCF) on a Ti/RuO2-TiO2 electrode in the presence of multi-walled carbon nanotubes (MWCNTs) was studied in a three-dimensional electrochemical (3DE) reactor. The response surface methodology (RSM) based on central composite design (CCD) was utilized to determine the influence of different factors. The results revealed that the obtained polynomial experimental model had a high coefficient of determination (R-2 = 0.9762) based on analysis of variance. The optimum condition for the removal of DCF by the 3DE process was obtained with the initial pH of 3.8, the initial DCF concentration of 4 mg/L, the current density of 20 mA/cm(2), the particle electrode concentration of 70 mg/L, and the electrolysis time of 85 min. The quadratic model developed for DCF removal and subsequently the analysis of the F value illustrated that the initial pH was the most important factor in the removal of DCF. The comparative experiments between electrochemical processes showed the high electrocatalytic activity and removal efficiency of the 3DE reactor with the MWCNT particle electrode. The results also showed that the Ti/RuO2-TiO2 electrode, in addition to its high stability, had a very good electrocatalytic activity in the 3D reactor. The stability and reusability test proved that MWCNTs, as a particle electrode, had a potential to improve the long-term electrocatalytic degradation of DCF in the aqueous solutions. Based on the identified intermediate compounds along with the results of other studies, a possible pathway for the electrochemical oxidation of DCF by the 3DE process catalyzed with MWCNTs was proposed.

Item Type: Article
Keywords: diclofenac multi-walled carbon nanotubes three-dimensional electrochemical reactor response surface methodology ti/ruo2-tio2 electrode response-surface methodology waste-water treatment nonsteroidal antiinflammatory drugs enhanced electrocatalytic removal coated titanium anodes particle electrodes fenton oxidation aqueous-solution ti/sno2-sb electrode reaction-kinetics
Divisions: Faculty of Health > Department of Environmental Health Engineering
Research Institute for Primordial Prevention of Non-communicable Disease > Environment Research Center
Page Range: pp. 24746-24763
Journal or Publication Title: Environmental Science and Pollution Research
Journal Index: ISI
Volume: 25
Number: 25
Identification Number: https://doi.org/10.1007/s11356-018-2527-8
ISSN: 0944-1344
Depositing User: Zahra Otroj
URI: http://eprints.mui.ac.ir/id/eprint/9453

Actions (login required)

View Item View Item