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Abstract

Background Increasing evidence indicates that obesity is associated with tumor development and progression. Leptin is an
adipocyte-related hormone with a key role in energy metabolism and whose circulating levels are elevated in obesity. The effect
of leptin on cancer progression and metastasis and its underlying mechanisms are still unclear. Leptin can impact various steps in
tumor metastasis, including epithelial-mesenchymal transition, cell adhesion to the extracellular matrix (ECM), and proteolysis
of ECM components. To do so, leptin binds to its receptor (OB-RDb) to activate signaling pathways and downstream effectors that
participate in tumor cell invasion as well as distant metastasis.

Conclusions In this review, we describe metastasis steps in detail and characterize metastasis-related molecules activated by
leptin, which may help to develop a roadmap that guides future work. In addition, we conclude that a profound understanding of
the fundamental molecular processes that contribute to leptin-induced metastasis may pave the way for the development of new

prognostic molecules and appropriate approaches to the treatment of obesity-related cancers.
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1 Introduction

Obesity is considered one of the most important health chal-
lenges in recent decades [1]. According to the world health
organization (WHO), obesity prevalence has nearly tripled
between 1975 and 2016 [2]. Obesity is a well-established risk
factor for many disorders, such as type 2 diabetes and cardio-
vascular disease [3, 4]. In addition, epidemiologic studies
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have suggested a relationship between obesity and different
cancer types [1, 5].

Cancer is one of the most common causes of death global-
ly, with approximately 8 million deaths each year [6]. Several
studies have indicated associations between obesity and dif-
ferent cancer types [7, 8], including hematological malignan-
cies [9, 10], colon cancer [11], gastrointestinal malignancies
[12], bladder and renal carcinoma [13], endometrial cancer
[14, 15], ovarian cancer [16], hepatocellular carcinoma [17],
and gastric, gallbladder [1], pancreatic [18, 19], prostate [20,
21] and breast cancer [22-26]. Several mechanisms have been
proposed to explain the link between obesity and cancer pro-
gression, including increased lipid profiles in cancer, pro-
tumorigenic signaling lipids, inflammation, insulin resistance
and alterations in adipokine regulation [27]. Leptin is an im-
portant adipokine secreted by adipocytes and plays a key role
in energy homeostasis regulation [4, 28]. Previous studies
have shown mitogenic and anti-apoptotic effects of leptin in
various cancer types. Leptin also influences cell migration and
invasion, which are two important steps in tumor progression
and metastasis [29-32].

Metastasis is the most important feature of malignant tu-
mors and is the leading cause of cancer-related death [33].
This process includes several unique biological steps in which
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tumor cells separate from the primary site, migrate along pri-
mary tissue and invade into the blood or lymphatic circulation
system until they reach distant target tissues [33, 34].
Molecular interactions between tumor cells, the extracellular
matrix (ECM), and stromal cells are important in the metasta-
sis process. Epithelial-mesenchymal transition (EMT) is a cru-
cial step in the metastasis process and is characterized by
conversion of epithelial cells into mesenchymal cells [35].
During EMT, epithelial cells obtain mesenchymal properties,
including motility and invasiveness [36]. In this metastasis
step, gene expression profiles switch from E-cadherin to N-
cadherin, and cells manifest a migratory morphology [37].
Cell migration starts in response to an external signal associ-
ated with changes in cytoskeletal machinery that results in
“leading front” extension. Thereafter, the leading front of tu-
mor cells adheres to ECM components by means of adhesion
molecules, including integrins and cadherins [38, 39]. Actin-
myosin contraction is essential to generate a traction force,
which promotes slow sliding of the cell body forward [40].
Actin-myosin assembly is regulated by various modulatory
molecules, such as the Rho-GTPase family, Rho-associated
kinase (ROCK), Myosin light-chain kinase (MLCK),
Myosin light-chain phosphatase (MLCP), mammalian homo-
log of Drosophila diaphanous (mDial), LIM kinases and the
actin-depolymerizing factor (ADF)/cofilin family [41].
Another step in cell invasion is ECM degradation, me-
diated by proteolytic enzymes that are secreted by anchored
tumor cells. This process provides a locally modified region
in the matrix for invasive cells to migrate through the ECM
[42, 43]. Matrix metalloproteinase (MMPs) [42] and the
plasminogen activator (PA) system [44] are two types of
hydrolyzing enzymes that participate in ECM degradation.
Activation of different signaling pathways, such as Janus
Kinase-Signal Transducer and Activator of Transcription-3
(JAK-STAT3) [45], Phosphatidylinositol 3-Kinase and
AKT (PI3K/AKT) [46], and Mitogen-activated Protein
Kinase (MAPK) [47] pathways, by cytokines and growth
factors is responsible for regulating the expression of pro-
teins contributing to the metastasis process. JAKs are tyro-
sine kinases that are activated and phosphorylated in re-
sponse to cytokine receptor activation. Activated JAKSs in-
duce transphosphorylation and dimerization of STATSs,
which is crucial for their entrance into the nucleus [48].
PI3K is a key effector downstream of receptor tyrosine ki-
nases (RTKs) and G protein-coupled receptors (GPCRs)
that generates phospholipids, activates several downstream
effectors (such as AKT and mTOR), and produces intracel-
lular messages in response to different growth factors and
cytokines [49]. In addition, the MAPK family consists of
three major groups: extracellular signal-regulated kinase
(ERK), Jun N-terminal kinase (JNK) and p38 isoforms.
The MAPKSs are phosphorylated by kinases upon ligand-
mediated activation of receptor tyrosine kinases [47].
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Past studies have demonstrated that leptin stimulates cell
migration and invasion by promoting the expression of pro-
teins that participate in different steps in the metastasis pro-
cess. In this review, we describe a number of molecular mech-
anisms that contribute to different metastasis steps and their
roles in leptin-induced cancer progression. We focus on the
different roles of EMT-associated markers, cell adhesion to
ECM molecules, and particularly protease enzymes in
leptin-induced metastasis. We also discuss the role of
adiponectin, another adipokine, which has an effect opposite
that of leptin on cancer progression. Finally, we review all the
leptin antagonist molecules that can be considered as promis-
ing therapeutic agents in the treatment of obesity-related can-
cers. Inquiries for this review were carried out in bibliographic
databases, including Google Scholar, PubMed, and Science
Direct. We screened all studies regarding leptin and cancer
metastasis published up to 2018. Studies that investigated
the effects of leptin on cancer cell proliferation, cell growth,
cell cycling or cell apoptosis or studies that demonstrated lep-
tin effects on noncancerous cells were excluded.

2 Leptin and leptin receptors

Leptin, a 16-kDa protein encoded by the ob (obese) gene,
comprises 167 amino acids and is predominantly produced
by adipocytes [50]. While white adipose tissue is the main site
of leptin secretion, other tissues can also secrete leptin, such as
brown interscapular fat, placenta, ovaries, endometrium,
stomach, hypothalamus, pituitary and cancer cells [51, 52].
The primary role of leptin is regulation of energy homeostasis
by controlling energy intake and appetite through its effects on
the hypothalamus nucleus [50]. Furthermore, leptin has im-
portant roles in the endocrine and immune systems and influ-
ences other processes, such as glucose homeostasis, bone for-
mation, tissue repair and inflammation [53]. Leptin may di-
rectly act on various types of cancer cells and induce cancer
initiation and progression [7].

The blood level of leptin is influenced by adipose tissue
mass [54], and they have a positive correlation [55]. Serum
leptin level is typically maintained at a concentration of less
than 10 ng/ml in healthy subjects but may increase up to
50 ng/ml in obese individuals [56]. Serum leptin level is also
affected by several physical, physiological, chemical, neuro-
logical, and genetic conditions. Alteration in body mass, en-
ergy balance, fasting/overfeeding, composition of diet, nutri-
tional status, cigarette smoking, exercise and serum levels of
molecules such as insulin, glucocorticoids, estrogen and tes-
tosterone isoproterenol, (3-adrenergic receptor agonists, tumor
necrosis factor-« (TNF-«), and interleukin (IL)-1 are among
the main factors affecting the serum leptin level [50, 55, 57].

Several in vitro studies have demonstrated leptin-induced
cell invasion and migration in different cancer cells, such as
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hepatocellular carcinoma [58, 59], lung cancer [60], breast
cancer [31, 61-65], prostate cancer [66], colorectal cancer
[67], melanoma [68], ovarian cancer [69] and renal carcinoma
[70] cells. Recently, Huang et al. demonstrated that cell mi-
gration and invasion were increased through acetyl-CoA ace-
tyltransferase 2 (ACAT?2) upregulation after leptin stimulation
in breast cancer. They found that the PI3K/AKT/Sterol regu-
latory element-binding protein 2 (SREBP-2) signaling path-
way is involved in leptin-induced ACAT?2 upregulation and
the invasive effect of leptin [71]. In another study, it was
shown that leptin enhances IL-18 upregulation and secretion
in tumor-associated macrophages (TAMs), leading to in-
creased migration and invasion of breast cancer cells.
Pretreatment with a nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-Kf3) inhibitor significantly
inhibited the stimulatory effects of leptin, signifying a role of
NF-«kB in leptin-induced IL-18 expression and cell invasion
[72]. In contrast with these findings, Meerson et al. reported
that leptin and insulin-induced microRNA (miR)-4443 over-
expression blocked nuclear receptor coactivator 1 (NCOAL)
and TNF receptor-associated factor-4 (TRAF4) expression
and attenuated cell invasion of human colon cancer cells [73].

Leptin exerts its effects through leptin receptors (ObRs)
expressed in the brain as well as in peripheral tissues. ObR,
a member of the class I cytokine receptor family, has at least
six isoforms: a long form (OB-RD), four short forms (OB-Ra,
OB-Rc, OB-Rd, and OB-Re) and a soluble form (OB-Re).
They are produced via alternative mRNA splicing of the dia-
betes (db) gene [74, 75]. OB-Rb contains a long intracellular
domain that is essential for the full signaling capability re-
sponsible for the biological effects of leptin [76]. Leptin bind-
ing to OB-Rb induces activation of several signaling path-
ways, such as JAK/STAT3, PI3K/AKT, and MAPK/ERK.
These signaling pathways participate in stimulatory effects
of leptin on the hallmarks of cancer development, including
cell proliferation, apoptosis, cell migration and invasion, an-
giogenesis and vascular stimulation [58, 77-83].

The polymorphism of leptin and OB-Rb genes has been
evaluated in several cancers [84-97]. A number of in vitro
studies has shown the involvement of OB-Rb in cell invasion
and metastasis in various cancer cell lines [98]. Moreover,
in vivo studies demonstrated a positive correlation between
OB-Rb overexpression and cancer progression [84, 99—104].
How obesity is correlated with the survival of patients suffering
from metastatic cancer compared with nonobese patients is not
fully understood. Recently, Kato et al. observed that overweight
cancer patients had higher serum leptin levels than healthy
nonobese patients. In addition, they found a positive correlation
between serum leptin levels and ascites levels, and they ob-
served higher noticeable ascites levels among overweight and
obese patients compared with healthy nonobese cancer pa-
tients. Their results indicated that the leptin/OB-Rb pathway,
and maybe other inflammatory cytokines, particularly in obese

women, could participate in the survival of floating cancer cells
in ascites or the abdominal cavity following debulking surgery,
helping their migration to secondary sites and recurrence and
progression of cancer [105]. They demonstrated a higher OB-
Rb expression level in ascites and metastatic tumors than in
benign subjects and reported that OB-Rb has a key role in
crucial metastasis steps, controlling processes such as migration
and cell invasion [105]. In another study on ovarian cancer,
overexpression of OB-Rb was found to be correlated with an
unfavorable outcome in Middle Eastern patients [106].
Furthermore, Fan et al. found that OB-RbD is overexpressed in
pancreatic cancer tissues and that its activation by leptin pro-
motes cell invasion in pancreatic cancer [107]. Similarly, in
renal cancer, it was reported that OB-Rb overexpression is as-
sociated with venous invasion, histological type and lymph
node metastasis [108]. Moreover, Ishikawa et al. analyzed
207 gastric cancer tissues (100 early and 107 advanced carci-
nomas) and detected lymph node metastasis in 49.5% of sub-
jects with high leptin expression and in 50.5% of OB-Rb-
positive subjects [109]. In colorectal cancer, it was noticed that
the expression of OB-R is significantly higher in metastatic
colorectal tissues than in local colorectal cancer tissues [110].
In a cohort study of 173 subjects, a strong correlation was found
between OB-R expression and nodal metastasis and advanced
stage in medullary thyroid carcinoma (MTC) [111].
Furthermore, it was shown that ObR is markedly overexpressed
in metastatic breast cancer tissues compared with normal tis-
sues [112, 113]. Additionally, overexpression of OB-Rb was
detected in 62% of non-small-cell lung cancer tissues versus
31% of noncancer lung tissues [114].

3 EMT-associated markers

EMT is defined by loss of epithelial properties with concom-
itant gain of a mesenchymal-like phenotype and participates in
processes such as cancer cell invasion and metastasis [35].
During EMT, epithelial cells lose their cell polarity and cell-
cell adhesion ability and gain migratory and invasive charac-
teristics [36].

Among cell adhesion molecules, the cadherin superfamily
consists of more than 80 members. E-cadherin (CDH1), a
major member of the cadherin family, is extensively found
in epithelial cells and plays a crucial role in adherens junctions
and the stability of cell-cell connections [115, 116]. Epithelial
cells link to their neighboring cells through the extracellular
domain of two E-cadherins. Moreover, the cytoplasmic face of
adherens junctions links to the actin cytoskeleton through
binding of E-cadherin to (3-catenin, o-catenin, and p120-
catenin [117, 118]. In EMT, E-cadherin gene expression is
modulated by certain transcriptional factors, such as SNAII,
SNAI2, and ZEB2 or Twist, leading to destabilization of
adherens junctions [35]. In addition, upregulation of
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mesenchymal markers, such as vimentin and N-cadherin, re-
sults in cytoskeleton remodeling. N-cadherin (CDH?2) is an-
other member of the cadherin superfamily and is involved in
cell motility and migration [119]. The E- to N-cadherin switch
is often seen in EMT and is recognized as a cancer progression
hallmark [37]. In transformed epithelial cells, cell-cell adhe-
sion is maintained via N-cadherin-mediated cell-cell contacts,
which results in directional persistence of migration [120].

Altogether, these changes eventually lead to cell detachment
from epithelial cell clusters and enhance cell motility [121].
Several previous studies have evaluated the role of leptin and
its receptor in breast cancer EMT, a key step in cell invasion and
metastasis. A recent study indicated that leptin treatment changes
CDHI1 and SNAI2 expression via the transforming growth factor
beta 1 (TGF[31) signaling pathway and consequently promotes
EMT in breast cancer [122]. In another study, Wei et al. reported
that leptin enhances vimentin and fibronectin expression, atten-
uates E-cadherin expression and promotes EMT in breast cancer
cells via pyruvate kinase M2 (PKM2) upregulation through the
PI3K/AKT signaling pathway [123]. Moreover, Wang et al. re-
ported that IL-8 contributes to leptin-induced EMT in breast
cancer cells through PI3K/AKT activation. They observed that
the use of a blocking antibody against IL-8 and AKT inhibitor
significantly blocked leptin-induced vimentin and fibronectin
expression [124]. In addition, Yan et al. reported that cell treat-
ment with leptin reduced E-cadherin expression as well as EMT
in breast cancer. They also found that (3-catenin activation
through the Akt/GSK3 and MTA1/Wntl pathways is
required for leptin-induced EMT [125].

Considering other cancer types, Trevellin et al. demonstrat-
ed that incubation of OE33 cells with conditioned medium
(CM) collected from cultured biopsies of adipose tissue al-
tered the expression of leptin, ObR and EMT markers. They
concluded that leptin, as a crucial player, contributes to
peritumoral adipose tissue-induced cell invasion in esophage-
al adenocarcinoma [126]. In ovarian cancer, Kato et al. dem-
onstrated that leptin prompts the expression of EMT markers,
such as N-cadherin, vimentin, SNAIL, and ZEB2, and con-
tributes to stemness maintenance [105]. A study on the effect
of leptin on EMT in lung cancer showed vimentin overexpres-
sion and E-Cadherin downregulation in leptin-treated A549
cells. In addition, they found that blocking of TGF3 with
small interfering RNA (siRNA) significantly reduces
EMT as well as vimentin expression, suggesting key
roles of TGFf in leptin-induced EMT in lung cancer [60].
Moreover, two other studies using animal models revealed
that EMT marker levels in sera from obese mice are altered
and that EMT is promoted in LNCaP and PacMetUT1 prostate
cancer cells [66] and B16BL6 melanoma cancer cells [127].

Previous studies have demonstrated the role of Notch com-
ponents in EMT and the acquisition of tumor aggressive phe-
notypes [128—130]. It is also reported that leptin promotes the
expression of Notch components via IL-1 signaling in breast
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[131, 132] and pancreatic [133, 134] cancer cells. Geo et al.
demonstrated novel crosstalk between Notch, IL-1 and leptin
(NILCO) that promotes cell proliferation, migration and tumor
angiogenesis in breast cancer cells [135, 136]. In an in vivo
study, Gonzalez-Perez et al. also showed the important role of
NILCO in breast cancer progression. They reported that leptin,
IL-1, and Notch molecules are differentially expressed in breast
cancer, suggesting potential prognostic biomarker value in
breast cancer [137]. In endometrial cancer, Daley-Brown
et al. reported key roles for NILCO in leptin-induced cell inva-
sion [138]. Accordingly, these results demonstrated that
NILCO can contribute to leptin-related cancer progression.

The role of miRNAs in EMT and cancer progression has
been reported by several investigators [139]. It was found that
some miR200 family members inhibit EMT, self-renewal, and
differentiation of cancer stem cells (CSCs) [140]. Previous
studies have demonstrated a role of miR200 members in sup-
pression of these processes by interacting with Notch signaling
and ZEB1/2 ZEBI in pancreatic and breast cancer cells
[141-143]. Menthol et al. preliminarily analyzed pancreatic
cancer biopsies using TCGA Databank and reported higher
miR21 expression compared with miR200, suggestive of a
positive association between pancreatic cancer progression
and miR21 upregulation. They also analyzed data from
Pathway Studio Platform and determined a potential relation-
ship between leptin signaling, CSC markers, histone
deacetylases (HDACs), miR21 (oncogenic), and miR200 (tu-
mor suppressor) resulting in pancreatic cancer progression.
They also showed that leptin can promote the expression of
CSC (ALDHI and CD44) markers as well as miR21 expres-
sion. On the other hand, miR200 members may attenuate the
expression of OB-Rb and CSC markers, while miR21 enhances
their expression. In addition, further analysis by Menthol et al.
showed that leptin could indirectly impact HDAC expression
via miRNA or CSC markers. These findings suggest that dys-
regulation of HDACs, miR21, miR200, leptin signaling and
CSC markers plays a crucial role in pancreatic cancer progres-
sion [144]. In colon cancer, an inhibitory role of miR-4443 in
leptin-induced cell invasion was reported by Meerson et al.
They demonstrated that miR-4443 blocks cell invasion through
downregulation of TRAF4 and NCOA1 [73].

4 Cell-to-ECM adhesion molecules

The ECM serves as a scaffold for the generation of traction
force, which is necessary for migratory cell movement. To this
end, adhesion molecules on the surface of tumor cells bind to
ECM components, including fibronectin, collagen, and lami-
nin [39]. Adhesion molecules, also known as CAMs, are high-
ly specific transmembrane glycoproteins involved in cell-cell
or cell-ECM interactions [145]. Several families of adhesion
molecules have been identified, such as integrins, the
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immunoglobulin family, selectins, cadherins, and lymphocyte
homing receptors. Many CAM members play essential roles
in pathological processes, including tumor metastasis. One of
the most important adhesion molecules participating in cell-
ECM interactions are integrins. These transmembrane pro-
teins comprise two alpha and beta subunits linked to each
other via noncovalent bonds and penetrate into the cell mem-
brane [146]. The NH,-terminal ends of the alpha and beta
subunits contribute to the constitution of ECM-cell bridges
[147]. In addition, the cytoplasmic ends of integrins are direct-
ly linked with signaling proteins, such as focal adhesion ki-
nase (FAK) and other adapter proteins [148]. FAK, a cytoplas-
mic tyrosine kinase, is activated via autophosphorylation at
Tyr-397 when ECM components bind to integrins. These pro-
teins prepare a scaffold for interaction between ECM proteins
and integrins [149]. The roles of integrins and FAK activation
are well recognized in tumor formation and metastasis.
Another adhesion molecule involved in cell-ECM interac-
tions is intercellular adhesion molecule-1 (ICAM-1), a

Table 1

member of the immunoglobulin superfamily. This transmem-
brane glycoprotein can bind to macrophage-1 antigen (Mac-1)
and lymphocyte function-associated antigen-1 (LFA-1) to fa-
cilitate cancer cell invasion [150, 151]. An association be-
tween ICAM-1 upregulation and more aggressive lesions
has been reported in several tumor types, such as gastric
[152] and lung [153] cancer. Moreover, Chen et al. re-
ported that ICAM-1 overexpression participates in prostate
cancer cell invasion, which can be attenuated by suppression
of ICAM-1 expression [154].

The role of many integrin family members, including 33,
avP5, and av33, as well as that of FAK, in leptin-induced
cell invasion has been investigated in several studies (see
Table 1). How leptin affects each of these integrins has been
explained by several investigators. Spina et al. showed that in
MDA-MB-231 breast cancer cells, elevation of intracellular
cyclic adenosine monophosphate (cAMP) markedly blocks
leptin-mediated ERK1/2 and STAT3 phosphorylation in
breast cancer [155]. In another study, they demonstrated that

Summary of leptin-induced MMP overexpression in various cancer cell types, leading to cell invasion and migration

Dose of leptin treatment Type of MMP Type of human cancer cells Detection method Year, reference

100 ng/ml MMP2, 9 SCC-9 and SCC-4 oral squamous qRT-PCR 2017 [188]
cell carcinoma cells

1-40 ng/ml MMP 9 OVCAR-3 ovarian cancer cells qRT-PCR, Western blotting 2017 [189]

1-100 ng/ml MMP7, 2,9 OVCAR3 and SKOV3 ovarian qRT-PCR, Western blotting, 2017 [216]
cancer cells Zymography

250 ng/ml MMP3, 9 GBC-SD gallbladder cancer cells Western blotting, Zymography 2016 [201]

1, 10 and 100 nM MMP2 11Z, 127 and 22B endometriotic qRT-PCR, Western blotting, 2015 [202]
cells Zymography

0, 5, 50, or 500 ng/ml MMP9, TIMP1, BeWo choriocarcinoma qRT-PCR, Western blotting 2015 [190]

TIMP2 trophoblast cells

100 ng/ml MMP13 PANC-1 and AsPC-1 pancreatic qRT-PCR, Western blotting, 2015 [107]
cancer cells Zymography

100 ng/ml MMP9 and U87 and U251 qRT-PCR, Western blotting 2014 [191]

[3-integrins glioma cells
0 nM, 1.2 nM, 6 nM, MMP7 HT-29 human colon cancer cells qRT-PCR, Zymography 2013 [217]
25 nM, and 100 nM
0, 50, 100, 250 and MT1-MMP AGS, MKN-28 and MKN-45 gastric qRT-PCR, Western blotting, 2013 [220]
500 ng/ml cancer cells Zymography

100 ng/ml MMP9 MCF7 breast cancer cells qRT-PCR, Western blotting 2013 [192]

100 ng/ml MMP2, 9 HER2-MCF10A breast epithelial cells qRT-PCR, Zymography 2012 [193]

40 nM 33 integrin MDA-MB-231 breast cancer cells qRT-PCR, Western blotting 2012 [155]

0.1-3 uM avb3 integrin PC3, DU145 and LnCaP prostate Flow cytometry and western 2011 [160]
cancer cells blotting

100 ng/ml MMP7 HT-29 colon cancer cells qRT-PCR, Western blotting 2011 [194]

100 ng/ml (33 integrin SW480, SW620 and HCT116 colon Western blotting 2010 [157]
carcinoma cells

200 ng/ml MMP1, 9, 13 HepG2 hepatocellular carcinoma cells Flow cytometry 2010 [195]

62-500 ng/ml MMP13 C6 glioma cells qRT-PCR, Zymography 2009 [210]

0, 10 and 100 ng/ml MMP2 MCEF-7 breast cancer cells Western blotting, Zymography 2009 [196]

0.1-3 uM avf33 integrin JJ012 and SW1353 qRT-PCR, 2009 [159]

chondrosarcoma cells Western blotting
100 ng/ml MMP13 C6 glioma cells qRT-PCR, 2009 [210]
Western blotting
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the activation of both protein kinas A (PKA) and protein ex-
change directly activated by cAMP (EPAC) in response to
cAMP elevation inhibited leptin-induced cell migration via
33 integrin and FAK downregulation [156]. Previously, it
was revealed that activation of FAK via a cluster of integrins
is potentiated by autophosphorylation of FAK at Tyr397 and
attachment of src family kinases to this binding site [157,
158]. Another mechanism underlying leptin-directed integrin
activation was demonstrated by Yang et al. They found that
leptin promotes cell migration through ocv[33 integrin upreg-
ulation. Furthermore, they showed that blocking of leptin re-
ceptor, insulin receptor substrate (IRS)-1, phosphatidylinositol
3-kinase (PI3K), Akt and NF-kB pathways inhibited leptin-
mediated cell migration as well as upregulation of av33
integrin, indicating key roles of these pathways in leptin-
induced effects in chondrosarcoma cells [159]. The role of
OBR1/IRS-1/PI3K/AKT/NF-«kB signaling pathways in
leptin-induced av33 integrin expression and cell migration
has also been evaluated in prostate cancer cells [160].

Upregulation of CAM-1 by leptin was demonstrated by
Wong et al. for the first time. They observed that leptin has a
key role in the migration of eosinophils and allergic inflamma-
tion induced by increased ICAM-1 expression [161]. In gastric
cancer, Dong et al. reported a strong positive correlation between
leptin and ICAM-1 overexpression in metastatic gastric cancer
tissues. It was also reported that knockdown of ICAM-1 with
siRNA significantly decreased leptin-induced cell migration of
AGS and MKN-45 gastric cancer cell lines [162]. Another study
conducted by Suzukawa et al. revealed that ICAM-1 expression
was increased in human primary airway epithelial cells and the
human airway epithelial cell line, BEAS-2B, after treatment with
leptin. The leptin-mediated ICAM-1 expression and cell mi-
gration were attenuated by BAY11 7082, a specific in-
hibitor of NF-kB, or by dexamethasone [163].

The connection between adhesion molecules and the actin-
myosin cytoskeleton is essential for the formation of focal
adhesion complexes and cell body contraction, which are im-
portant in directional motility during migration [39]. In focal
adhesion complexes, integrins bind to actin through vinculin
and talin, membrane-cytoskeletal proteins [148]. Vinculin is
recruited to nascent adhesions and has crucial roles in focal
adhesion formation. It binds directly to actin filaments
and the talin rod domain and stabilizes interactions be-
tween actin and talin. This essential stabilization func-
tion of vinculin is necessary for binding of integrins to
the actin cytoskeleton [164]. Previous studies have demon-
strated that loss of vinculin enhances cell invasion and metas-
tasis [165, 166]. Polymerization of actin and its interaction
with myosin generates a contractile force in the cell body,
which is necessary for directional migration. The tension of
the actin-myosin cytoskeleton induces body cell shortening,
promotes internal tension generation and subsequently stimu-
lates slow sliding of the cell rear edge forward [167—169].
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Actin cytoskeletal reorganization is regulated by various
signaling proteins, such as Rho family GTPase proteins [41].
This family belongs to the Ras superfamily and contains several
members, including RhoA, Rac and CDC42 proteins [170].
Rho family proteins serve as a binary molecular switch cycling
between an inactive, GDP-bound form, and an active, GTP-
bound form [171]. The effects of RhoA on actin polymerization
and actin-myosin contractility appear to be mediated by several
downstream effectors [41]. RhoA induces actin polymerization
through activation of mDia or inhibition of cofilin through the
ROCK-LIM kinases (LIMK) pathway [172, 173]. On the other
hand, it has been shown that RhoA-ROCK activity leads to
actin-myosin contractility by blocking myosin phosphatase
and by activation of myosin light chain (MLC) [41]. The in-
volvement of RhoA in cancer cell invasion and metastasis has
been demonstrated in previous studies [174].

To demonstrate the mechanisms of leptin-induced cell mi-
gration and tumor metastasis, a number of investigators re-
ported that leptin affects the RhoA/ROCK signaling pathway
and its downstream targets to promote cell invasion in differ-
ent cancer types. In a recent study on ovarian cancer, we
reported that leptin promotes RhoA and ROCK activation as
well as cell invasion in OVCAR3 and SKOV3 cell lines,
which was significantly inhibited by knockdown of OB-Rb
using siRNA. We also found no effect of leptin on RhoA/
ROCK activation in the CaoV-3 cell line, which does not
substantially express OB-Rb protein. Moreover, pretreatment
with RhoA and ROCK inhibitors markedly attenuated the
invasive ability of cells, suggesting a role of RhoA/ROCK
in leptin-induced cell invasion in ovarian cancer [175]. In
another study, through F-actin and vinculin staining and im-
munocytochemistry, Kato et al. detected the formation of new
focal adhesion complexes in an ovarian cell line incubated
with leptin. The authors of this study also reported that leptin
induces both active and total forms of RhoA in a time-
dependent manner. They also described a significant increase
in activation of myosin phosphatase target subunit 1
(MYPT1), a downstream target of RhoA involved in cytoskel-
etal reorganization, in HEY and SKOV3 cells after incubation
with leptin [105]. Furthermore, Dong et al. reported an in-
crease of RhoA activation and ROCK phosphorylation in
AGS and MKN-45 gastric cancer cell lines after leptin stimu-
lation. In addition, they observed that leptin-induced cell mi-
gration is markedly inhibited in the presence of either C3 (Rho
inhibitor) or Y-27632 (ROCK inhibitor) in both AGS and
MKN-45 cells, demonstrating the crucial role of the RhoA/
ROCK pathway in gastric cancer cell invasion [162].
Considering colon cancer, Jaffe et al. evaluated the signaling
pathways involved in leptin-mediated cell motility. Their re-
sults demonstrated that leptin activates Racl and Cdc42 but
not RhoA via PI3K and controls RhoA activation through the
Src kinase rather than JAK2 pathway. Moreover, they con-
cluded that leptin-mediated cell invasiveness and locomotion
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are essentially dependent on Racl and Cdc42 but not RhoA
activation. RhoA activation only occurs in the absence of
Racl and Cdc42 or a high level of leptin [176]. In addition
to cancer cell invasion, the roles of leptin-induced Rho acti-
vation and its downstream targets in physiological control of
actin cytoskeleton dynamics in normal tissues have been
investigated.

In an animal model study on Lepr*’* and Lepr /"~ mice, Xie
et al. cultured and purified the Sca-1+ progenitor cells from
the vessel wall and subsequently investigated the effect of
leptin on cell migration participating in neointimal lesions in
vessel injury. They found that leptin is upregulated after vessel
injury and that leptin-promoted cell migration in Sca-1+ pro-
genitor cells through Rac1/Cdc42 activation results in an in-
crease in neointimal formation [177]. In a study on pancreatic
[3-cells, it was reported that Rac-mediated actin remodeling
and myosin 2 are involved in KATP channel trafficking to the
plasma. It was also shown that leptin-induced AMP-depen-
dent Protein Kinase (AMPK) activation increases Rac activa-
tion and the phosphorylation of myosin regulatory light chain
(MRLC), which promotes cytoskeletal remodeling. Leptin-
mediated actin remodeling is attenuated when cells are
pretreated with Rac and myosin ATPase inhibitors or
are transfected with Rac siRNA [178]. Leptin-induced
RhoA/ROCK activation is also involved in cytoskeleton
reorganization in nucleus pulposus cells. Thus, Li et al.
demonstrated that leptin-mediated actin remodeling and stress
fiber formation are associated with RhoA-LIMKI1 activation
and cofilin phosphorylation. They observed that blocking of
RhoA/ROCK with pharmacological inhibitors significantly ab-
rogated the impacts of leptin on actin assembly and stress fiber
formation as well as phosphorylation of LIMK1 and cofilin.
Their findings suggest that activation of RhoA/ROCK/LIMK/
cofilin-2 pathways by leptin is involved in cytoskeleton remod-
eling in nucleus pulpous cells [179].

5 ECM component proteolysis

Proteolytic cleavage of ECM proteins is necessary for passage
of metastatic cancerous cells through the basement membrane
[39]. For this purpose, cells expand specialized protrusions
known as invadopodia with a capacity for ECM degradation.
These structures have been observed in aggressive tumors and
play a key role in migration, invasion, and metastasis of cancer
cells [180]. They are rich in actin filaments, actin regulatory
proteins, adhesion molecules and matrix-degrading proteases
[180, 181]. The degradation of ECM components by
invadopodia is mediated by two types of proteases, MMPs
and components of PA.

MMPs constitute a zinc-dependent endopeptidase family
containing 24 members that are structurally related and have
an ability to degrade ECM components [182]. Typically, the

MMP structure consists of four regions: a signal peptide re-
gion, a calcium-dependent catalytic region, a linker region,
and a hemopexin-like domain. These proteases are usually
secreted as a pro-peptide and are then activated via proteolytic
cleavage in the NH, terminus of the latent form [183]. They
are classified according to substrate specificity, structure, and
subcellular localization into five main groups, namely,
gelatinases, stromelysins, matrilysins, collagenases, and
membrane-type (MT)-MMPs [184—-186]. There is growing
evidence that MMPs contribute to several physiological and
pathological processes, including wound healing, reproduc-
tion, fetus development, tissue degradation, inflammation, cell
invasion and tumor metastasis in different organs [187].
Several studies have reported that leptin induces cell invasion
and migration through MMP overexpression in various cancer
types [188—196] (see Table 1 for a summary of the relevant
literature).

MMP-2 and 9 (known as gelatinase A and B) are two
members of the gelatinase MMP family, characterized by a
high capacity to degrade gelatin, a product of collagen degra-
dation. MMP-2 and MMP-9 have additional fibronectin re-
peats in their catalytic domain compared with other MMPs
[187]. They can be distinguished by differences such as mo-
lecular weight (MMP2: 72 kDa; MMP9: 95 kDa), enzyme
efficiency for gelatin degradation (higher for MMP-2), type
of substrate, type of inhibitor (TIMP-2 and TIMP-1) and tissue
distribution [185, 197]. MMP2 is produced by keratinocytes,
endothelial cells, chondrocytes, osteoblasts, and monocytes,
whereas MMP?9 is predominantly expressed in normal alveo-
lar macrophages, polymorphonuclear leukocytes, osteoclasts,
and trophoblasts [197].

MMP-2 and MMP-9, relative to other MMPs, have been
the particular focus of research in relation to their roles in
tumor progression and metastasis. According to these studies,
elevated levels of both MMP-2 and 9 have been observed in
different types of malignancies [183, 198]. They promote can-
cer cell invasion and metastasis through degradation of type
IV collagen, laminin-5 and other ECM components, such as
proteoglycans, osteonectin, and entactin [199]. Various stud-
ies have demonstrated that leptin enhances the expression and
activation of MMP-2 and MMP-9 in different types of tissues.
In a recent study, Santos et al. found that leptin promotes the
expression levels of both MMP-2 and MMP-9, leading to
enhanced migration of oral squamous carcinoma cells. They
also reported that gallic acid, a polyphenolic anticancer agent,
modulates leptin-mediated cell migration through downregu-
lation of MMP-2 and MMP-9 mRNA expression in oral squa-
mous cell carcinoma cells [200].

In gallbladder cancer (GBC), leptin treatment may cause a
significant increase in MMP-9 expression and activation as
well as cell invasion in GBC cells. These responses to leptin
can be inhibited by short hairpin RNA (shRNA) targeting OB-
Rb, which demonstrates the significant role of OB-Rb in
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leptin-induced MMP-9 activation and suggests that the leptin/
OB-Rb axis may be a therapeutic target for GBC treatment
[201]. In another study, Ahn et al. evaluated the role of leptin
in cell migration and invasion as well as MMP-2 expression in
human endometriotic cells. The authors reported a potential
increase in cell migration and invasion in response to leptin
treatment. Blocking of MMP-2 using siRNA and/or gelatinase
inhibitors markedly reduced leptin-induced migration and in-
vasion. They concluded that upregulation of MMP-2 mediat-
ed by leptin plays a crucial role in cell migration and invasion
in endometriotic cancer [202].

Another MMP type involved in cell migration and invasion
are collagenases, which are characterized by a broad substrate
specificity. Similarly, enzymatic studies have demonstrated a
difference between MMP-1, 8, and 13 in affinity for various
types of collagen [203, 204]. In addition, while MMP-1 and
MMP-13 are generated by different cell types and secreted
immediately after synthesis, MMP-§ is predominantly pro-
duced by neutrophils and stored until required [205]. MMP-
13 has been shown to play a role in different cancer types.
Elevated levels of MMP-13 have been associated with cell
invasion and metastasis in papillary thyroid carcinoma [206]
and breast cancer [207]. MMP-13 has also been studied as a
prognostic indicator in colon [208] and ovarian cancer [209].
In one study, Yeh et al. evaluated the role of MMP-2, MMP-9,
and MMP-13 in leptin-induced cell invasion of glioma cells.
They observed that MMP-13 but not MMP-2 and MMP-9
expression was enhanced in C6 glioma cells after leptin treat-
ment. Leptin-enhanced migration and invasion were attenuat-
ed by a neutralizing antibody or siRNA against MMP-13,
demonstrating that MMP-13 is involved in these effects of
leptin in glioma cells. Moreover, a significant decrease was
observed in leptin-promoted MMP-13 expression in response
to p38 MAP kinase and NF-kB inhibitors, suggesting that
leptin enhances MMP-13 expression via p38 and NF-kB path-
ways [210]. In another study, the contribution of MMP-13 in
leptin-mediated cell invasion was investigated in human pan-
creatic cancer by Fan et al. They revealed that OB-Rb over-
expression is associated with increased MMP-13 expression
in human pancreatic cancer tissues. Furthermore, it was shown
that leptin treatment markedly promoted cell invasion and
migration as well as MMP-13 expression in both PANC-1
and AsPC-1 pancreatic cell lines. In view of that, the investi-
gators reported that leptin stimulates cell invasion and migra-
tion of pancreatic cancer cells through MMP-13 overexpres-
sion, raising the possibility of the leptin/MMP-13 axis as a
therapeutic target for pancreatic cancer therapy [107].

In another study, Iliopoulos et al. inspected the effect of
leptin epigenetic regulation on the expression of MMP-3, 9,
and 13 in osteoarthritic chondrocytes. Increased expression of
leptin was positively associated with MMP-13 activity in
chondrocytes. Inhibition of leptin expression via siRNA sig-
nificantly attenuated MMP-13 expression as well as cartilage
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destruction, indicating the importance of leptin in osteoarthri-
tis therapy [211]. Moreover, several studies have shown that
leptin induces MMP-1, MMP-8 and MMP-3 production in
some diseases; however, their role in leptin-mediated cancer
progression remains unclear [212-214].

MMP-7, the smallest member of the MMP family, has been
reported as a key player in metastasis and cancer progression
[215]. MMP-7 is also proposed to have a crucial role in leptin-
mediated cancer cell invasion. A recent study revealed that
leptin enhances MMP-7 expression as well as ovarian cell
migration and invasion. Pretreatment with ERK1/2 or INK1/
2 inhibitors significantly attenuated leptin-mediated effects,
suggesting that these signaling pathways are involved in leptin
impacts on ovarian cancer progression. In addition, inhibition
of MMP-7 gene expression using siRNA markedly reduced
leptin-induced MMP-9 activation, indicating that MMP-7 has
an important role in leptin-mediated MMP-9 activation [216].
In another study, Lin et al. reported that leptin enhances
MMP-7 expression and the invasive potential of human colon
cancer cells. MMP-7 gene silencing markedly blocked the
leptin-promoted invasiveness of human colon cancer.
Furthermore, they observed a significant decrease in the stim-
ulatory effects of leptin on colon cancer progression after pre-
treatment with PI3K/AKT and MAPK/ERK inhibitors. They
concluded that leptin-induced MMP-7 upregulation plays a
crucial role in colon cancer progression [217].

In addition, previous studies have described a role of mem-
brane type 1-matrix metalloproteinase (MT1-MMP, also
known as MMP14) in leptin-mediated cell migration and in-
vasion. This MMP family comprises surface-anchored pro-
teinases shown to be upregulated in aggressive tumors and
to have a key role in cell invasion [218, 219]. In another study,
the surface expression of MTI-MMP in gastric cancer cells
was detected using a cell surface biotinylation assay and flow
cytometry in the presence of leptin. They observed that using
siRNA against kinesin family member 1B (KIFIB), a
microtubule-dependent motor involved in gastric cancer, abol-
ishes the influence of leptin on MT1-MMP expression.
Moreover, overexpression of leptin, MT1-MMP, and KIF1B
were revealed in gastric cancer tissues by immunohistochem-
istry. Taken together, these findings suggest that leptin-
induced cell invasion in gastric cancer is dependent on
MT1-MMP and KIF1B overexpression [220]. Wang et al.
characterized the role of MT1-MMP in the stimulatory effect
of leptin on human extravillous trophoblast (EVT) invasion.
Increased expression of MT1-MMP was observed in invasive
cells in response to leptin stimulation, and blocking of MT1-
MMP significantly inhibited the invasive potential of EVT
cells. They concluded that MT1-MMP overexpression is re-
quired for leptin-enhanced invasion in EVTs [221].

Similar to MMPs, upA also participates in tumor metastasis
and cancer progression [222]. The serine protease upA is re-
leased as a zymogen (pro-upA) and activated by proteases
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such as plasmin and trypsin following binding to its plasma
membrane receptor, uPAR. Then, active uPA catalyzes plas-
minogen, a zymogen, converting it to plasmin, an active serine
protease, which is able to proteolytically degrade the ECM
and basement membrane, facilitating cell invasion and migra-
tion [222, 223]. Plasminogen activator inhibitor type-1 (PAI-
1) is an inhibitor of uPA and has a key role in processes such
as signal transduction, cell adherence, and cell migration
[224]. In a recent study, it was demonstrated that leptin pro-
motes ovarian cancer cell invasion and migration through upA
overexpression. A time- and concentration-dependent in-
crease in upA expression was observed in ovarian cancer cell
lines after incubation with leptin. Cell transfection with OB-
Rb siRNA and pretreatment with specific PI3K/AKT, JAK/
STAT, and NF-kB inhibitors markedly decreased leptin-
mediated upA expression, illustrating that these pathways
contribute to leptin-dependent upA expression [175]. In an-
other study, Singh et al. reported that different concentrations
of leptin significantly increase PAI expression but do not af-
fect tissue-type plasminogen activator (tPA) expression or tPA
activity. Blocking of the ERK1/2 pathway by specific inhibi-
tors attenuated the elevation in PAI-1 induced by leptin. They
concluded that leptin enhances PAI expression through the
ERK1/2 pathway but has no regulatory effect on tPA [225].

6 Adiponectin reverses the impact of leptin
on cancer cell invasion

Unlike leptin, the circulating level of adiponectin, another
adipocyte-derived hormone involved in obesity-related can-
cers, is inversely correlated with the amount of white adipose
tissue [226, 227]. Numerous studies have conveyed a negative
relationship between circulating adiponectin levels and cancer
risk. Accordingly, decreased levels of adiponectin are ob-
served in colorectal cancer [228], endometrial cancer [229],
esophageal cancer, prostate cancer [230], and breast cancer
[231]. Several in vitro studies have reported that adiponectin
negatively influences leptin-induced cell invasion in some
cancer types [232]. In esophageal carcinoma cells, incubation
with adiponectin significantly reduced the impact of leptin on
cell migration and invasion as well as MMP-2 and MMP-9
activation. Additionally, a decreased effect of leptin on JAK
and STAT activation was observed in response to adiponectin
treatment. These effects of adiponectin were attenuated by a
protein tyrosine phosphatase 1B (PTP1B) inhibitor, suggest-
ing that adiponectin blocks the leptin-induced effect on cancer
progression in a PTP1B-sensitive manner by increasing the
expression and activation of PTP1B [233]. PTP1B is an im-
portant regulator of different signaling pathways that contrib-
ute to diabetes, obesity, and cancer [234]. Several pieces of
evidence have demonstrated that PTP1B negatively regulates
signaling pathways mediated by leptin [235]. In another study,

Taliaferro-Smith et al. reported the key roles of PTP1B upreg-
ulation and activation in adiponectin-mediated blocking of the
stimulatory effects of leptin in breast cancer. In animal exper-
iments, they observed an inhibitory effect of adenovirus-
mediated adiponectin on leptin-promoted tumorigenesis in
nude mice [236]. The inhibitory effect of adiponectin on leptin
activity was also demonstrated in hepatocellular carcinoma by
Sharma et al. They reported that adiponectin significantly
inhibited leptin-mediated invasion through upregulation of
suppressor of cytokine signaling (SOCS3) in HepG2 and
Huh7 cell lines. In addition, their results showed that
adiponectin markedly decreases leptin-mediated tumor bur-
den in nude mice [237]. Moreover, Wu et al. found that the
AMPK signaling pathway is involved in adiponectin suppres-
sion of leptin-induced aggressive endometrial cancer cell phe-
notypes. They reported downregulation of JAK/STAT3 in
leptin-treated cells after incubation with adiponectin [238].

7 Leptin/OB-Rb as therapeutic targets
in leptin-mediated cancers

Modulation of leptin, OB-Rb, or their downstream signaling
pathway may be a conceivable drug discovery target for
treating obesity-associated diseases, especially obesity-
related cancers. In this line, investigations have been directed
toward designing and developing leptin antagonists that may
block ObR and thereby control or delay leptin-related cancers.

Leptin muteins are a class of potent leptin antagonists that
are produced by a series of point mutations in human leptin.
Among the different types of leptin muteins, R128Q [239],
D40N and S127D influence the biological effects of leptin
without changing its receptor binding [240]. S120A/T121A
is another leptin mutein with powerful antagonist capacity that
is able to bind the CRH2 domain of ObR and inhibit the JAK/
STAT pathway [241]. The effect of this mutein on glutamate-
mediated apoptosis through ERK phosphorylation was inves-
tigated by Park et al. They reported that leptin may block this
effect of glutamate but leptin S120A/T121A mutein was un-
able to reverse this leptin effect [242]. Subsequently,
L39A/D40A/F41A (LDF or Lanl) and L39A/D40A/F41A/
[42A (LDFI or Lan2), triple and quadruple muteins respec-
tively, were assembled using molecular modeling accom-
plished with site-directed mutations. These muteins blocked
the biological activity of leptin through interaction with the
IgD domain of ObR [243, 244]. In prostate cancer, LDF mark-
edly suppressed the inductive effect of leptin on JAK?2,
ERK1/2, and Akt/PKB phosphorylation as well as activation
of apoptotic proteins [245]. In addition, LDFI suppressed
leptin-induced cell proliferation in MCF-7 and SKBR-3 breast
cancer cells [246]. Fiedor et al. evaluated the influences of two
leptin receptor antagonists on the carcinogenic effects of leptin
in ovarian cancer and human folliculoma. They reported that
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leptin-related carcinogenesis was significantly abrogated by
both LDFI and a superactive human leptin antagonist
(SHLA) [247, 248]. SHLA is a leptin mutein with more bind-
ing affinity for the receptor and more antagonistic activity than
other muteins and blocks leptin activity through inhibition of
the JAK2 pathway. Finally, preparation of PEGylated forms of
these leptin muteins has improved their bioavailability in the
body, increased their antagonist activity (but decreased their
receptor affinity), and raised them as potential therapeutic
agents in leptin-related diseases [249, 250]. In gastro-
esophageal adenocarcinoma, it was indicated that SHLA
alone or in combination with cisplatin markedly decreased
the tumorigenic effect of leptin [251]. Furthermore, Fiedor
et al. recently reported that SHLA and Lan2 reverse the neg-
ative influences of leptin on the expression of HDACs in
ovarian cancer cell lines [252].

Another class of leptin antagonists, peptide antagonists,
have primarily been synthesized by Grasso et al. and corre-
spond to the sequences of native leptin (167 amino acids)
with/without some modifications [253]. Leptin peptide
antagonist-1 (LPA-1, leptin demine 70-95) [254] and leptin
peptide antagonist-2 (LPA-2, leptin demine 3-34) [255] ex-
hibit high-affinity binding to ObR and block its signaling
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pathway in the presence of leptin [256]. In addition, Acal,
Allo-Aca, and D-Ser are three modified peptides (121-129)
that show pure antagonist properties. Among these, Allo-Aca
exhibits the highest serum half-life and antagonist efficacy
and has been shown to be a potent antagonist to inhibit the
biological activity of leptin in breast cancer [257, 258]. In one
study, Beccari et al. generated a novel analog of Allo-aca and
evaluated its anti-proliferative activity in breast and colon can-
cer cell lines. They found that this Allo-aca analog inhibited
leptin-mediated cell proliferation and its related signaling
pathway in both cancer types [259]. The effectiveness of
nanoparticle-linked leptin antagonists in combination with
chemotherapeutics on breast cancer cell viability was investi-
gated. The inhibitory effect of a nanoparticle-linked antagonist
on leptin signaling was demonstrated in MDA-MB-231 cells
[260]. In another study, a synthetic OB3 peptide blocked
leptin-mediated cancer progression by suppressing STAT3
and ER« activation [261, 262].

Some small chemical molecules, such as 2-aminopurine (2-
AP) [258], benzyl isothiocyanate (BITC) [263] and pyridine
derivatives [264], have also been designed and synthesized as
leptin antagonists. These molecules directly interact with
leptin-related signaling pathways, leading to inhibition of lep-
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ceptor and subsequent activation of its associated signaling pathways,
which in turn may lead to activation of downstream effectors involved in
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cell migration and invasion. Strategies such as manipulation of leptin/OB-
Rb antagonists, as well as integrative approaches, have been proposed as
effective options for the treatment of leptin-mediated cancers
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tin signaling-induced processes. Kim et al. revealed the poten-
tial effect of BITC against influences of leptin in MDA-MB-
231 and MCF-7 human breast cancer cells and suggested that
this could be a therapeutic strategy for breast carcinoma in
obese patients [263].

Monoclonal antibodies (mAbs) have also been reported as
potent leptin antagonists that block leptin effects in a dose-
dependent manner. For example, decreased leptin activity was
observed in breast cancer cells following 9F8 mAbD treatment,
suggesting this as a drug candidate for leptin-related cancers
[265]. Recently, other leptin antagonists have also been ob-
tained using a random nanobody-based approach, consisting
of monomeric antibody-derived therapeutic proteins targeted
against the extracellular portion of ObR [266].

8 Conclusions and perspectives

To date, ample studies have demonstrated that obesity is associ-
ated with an increase in leptin levels. According to the
abovementioned studies, leptin and OB-Rb play key roles in
obesity-mediated cancers. The leptin/OB-Rb axis induces cancer
progression through various biological molecules that participate
in EMT, cell-ECM interactions and ECM proteolysis following
activation of related signaling pathways, such as the JAK/STAT,
MAPK and PI3K/AKT pathways. Therefore, it is clear that
leptin and OB-Rb can be considered important targets for the
prevention and treatment of obesity-mediated diseases, espe-
cially cancer. Several studies have focused on leptin muteins,
peptide molecules, small chemical molecules, mAb and
nanobody-based approaches to antagonize leptin/OB-Rb
functions as conceivable therapeutic strategies for
obesity-mediated cancer. These molecules might be
promising therapeutic agents based on their remarkable
antagonist activity in many diseases in which leptin sig-
naling is involved, particularly obesity-related cancer.
Overall, bearing in mind that the activity of all these
leptin antagonist molecules has been determined in cell
culture and animal experiments, further preclinical and
clinical experiments are needed. Figure 1 depicts an integrated
perspective based on the findings presented in this review.
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