Discovery of potential inhibitors against New Delhi metallo-beta-lactamase-1 from natural compounds: in silico-based methods

(2021) Discovery of potential inhibitors against New Delhi metallo-beta-lactamase-1 from natural compounds: in silico-based methods. Scientific Reports. ISSN 2045-2322

Full text not available from this repository.

Abstract

New Delhi metallo-beta -lactamase variants and different types of metallo-beta -lactamases have attracted enormous consideration for hydrolyzing almost all beta -lactam antibiotics, which leads to multi drug resistance bacteria. Metallo-beta -lactamases genes have disseminated in hospitals and all parts of the world and became a public health concern. There is no inhibitor for New Delhi metallo-beta -lactamase-1 and other metallo-beta -lactamases classes, so metallo-beta -lactamases inhibitor drugs became an urgent need. In this study, multi-steps virtual screening was done over the NPASS database with 35,032 natural compounds. At first Captopril was extracted from 4EXS PDB code and use as a template for the first structural screening and 500 compounds obtained as hit compounds by molecular docking. Then the best ligand, i.e. NPC120633 was used as templet and 800 similar compounds were obtained. As a final point, ten compounds i.e. NPC171932, NPC100251, NPC18185, NPC98583, NPC112380, NPC471403, NPC471404, NPC472454, NPC473010 and NPC300657 had proper docking scores, and a 50 ns molecular dynamics simulation was performed for calculation binding free energy of each compound with New Delhi metallo-beta -lactamase. Protein sequence alignment, 3D conformational alignment, pharmacophore modeling on all New Delhi metallo-beta -lactamase variants and all types of metallo-beta -lactamases were done. Quantum chemical perspective based on the fragment molecular orbital (FMO) method was performed to discover conserved and crucial residues in the catalytic activity of metallo-beta -lactamases. These residues had similar 3D coordinates of spatial location in the 3D conformational alignment. So it is posibble that all types of metallo-beta -lactamases can inhibit by these ten compounds. Therefore, these compounds were proper to mostly inhibit all metallo-beta -lactamases in experimental studies.

Item Type: Article
Keywords: METALLO-BETA-LACTAMASE RESISTANCE AFFINITY LIGANDS DOCKING NDM-1
Journal or Publication Title: Scientific Reports
Journal Index: ISI
Volume: 11
Number: 1
Identification Number: https://doi.org/10.1038/s41598-021-82009-6
ISSN: 2045-2322
Depositing User: Zahra Otroj
URI: http://eprints.mui.ac.ir/id/eprint/15102

Actions (login required)

View Item View Item