(2021) Learning melanocytic proliferation segmentation in histopathology images from imperfect annotations. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021, 19 June 2021through 25 June 2021, Virtual, Online.
Full text not available from this repository.
Abstract
Melanoma is the third most common type of skin cancer and is responsible for the most skin cancer deaths. A diagnosis of melanoma is made by the visual interpretation of tissue sections by a pathologist, a challenging task given the complexity and breadth of melanocytic lesions and the subjective nature of biopsy interpretation. We leverage advances in computer vision to aid melanoma diagnosis by segmenting potential regions of lesions on digital images of whole slide skin biopsies. In this study, we demonstrate a Mask-R-CNN-based segmentation framework for such a purpose. To alleviate the cost of data annotation, we leverage a sparse annotation pipeline. Our model can be trained on sparse and noisy labels and achieves state-of-the-art performance in identifying melanocytic proliferations, producing a segmentation with Dice score 0.719, mIOU 0.740 and overall pixel accuracy 0.927. © 2021 IEEE.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Keywords: | Biopsy Diseases Image segmentation Oncology Data annotation Digital image Melanocytic lesion Noisy labels Potential region Skin biopsies Skin cancers State-of-the-art performance Tissue sections Visual interpretation Dermatology |
Subjects: | QZ Pathology |
Divisions: | Faculty of Medicine > Departments of Clinical Sciences > Department of Pathology |
Page Range: | pp. 3761-3770 |
Journal Index: | Scopus |
Publisher: | IEEE Computer Society |
Identification Number: | https://doi.org/10.1109/CVPRW53098.2021.00417 |
ISBN: | 21607508 (ISSN); 9781665448994 (ISBN) |
Depositing User: | Zahra Otroj |
URI: | http://eprints.mui.ac.ir/id/eprint/17979 |
Actions (login required)
View Item |